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ABSTRACT

When exposed to perceptual and motor sequences, people are able to gradually identify patterns within and form a compact
internal description of the sequence. One proposal of how sequences can be compressed is people’s ability to form chunks.
We study people’s chunking behavior in a serial reaction time task. We relate chunk representation with sequence statistics
and task demands, and propose a rational model of chunking that rearranges and concatenates its representation to jointly
optimize for accuracy and speed. Our model predicts that participants should chunk more if chunks are indeed part of the
generative model underlying a task and should, on average, learn longer chunks when optimizing for speed than optimizing for
accuracy. We test these predictions in two experiments. In the first experiment, participants learn sequences with underlying
chunks. In the second experiment, participants were instructed to act either as fast or as accurately as possible. The results of
both experiments confirmed our model’s predictions. Taken together, these results shed new light on the benefits of chunking
and pave the way for future studies on step-wise representation learning in structured domains.

Introduction
William James famously said that we are born into a “blooming, buzzing confusion”, and that we escape that confusion by
gradually making sense of the series of events we perceive. How we perceive a sequence of perceptual stimuli, process them,
and extract underlying structure, is a fundamental question of psychological investigations. One proposal of how the blooming,
buzzing confusion of seemingly disparate sequential events can become one cognitive unit is chunking1–4. Upon exposure to
sequential stimuli, humans and animals can identify repeated patterns and segment sequences into chunks of patterns5. To
this end, separate sequential elements merge into one cognitive entity. This cognitive entity is then recalled and identified as a
whole6: a phenomenon known as chunking7, 8.

Chunking is a phenomenon spanning across sequence learning, grammar learning, visual and working memory tasks, and
function learning, among others8–12. The ability to discover statistical regularities in sequences, and to identify them as discrete,
disparate units of chunks enables us to form a compact and compressed memory representation13, readily transferable to novel
domains14, and enables us to progress from novices to experts15, 16. As primitive building blocks of cognitive construction
units, a complex and lengthy sequence reduces to several chunks. This property facilitates compositionality in learning17,
communication of structure18, hierarchical planning19, and the organization of actions7. In short, chunking is a critical and
universal learning phenomenon.

We study the interaction of chunking with sequence statistics and propose another benefit of chunking in a sequential task:
the ability to more easily predict future outcomes and thereby act faster. We study this phenomenon in a serial reaction time
task (SRT), a classical paradigm to study motor sequence learning12, 20–22. In SRTs, sequences of instruction cues appear
consecutively on the screen, after which participants react by pressing the corresponding key that maps to the cue. If particular
patterns, for example, ABC, keep repeating, then grouping repeated chunks as a unit facilitates the prediction of upcoming
instruction sequences. The detection of a chunk’s beginning, in this case, A, implies that the within-chunk items B and then C
will follow. This anticipation of the following elements of a given chunk can allow participants to anticipate what is coming next
and thereby react faster12, 14. Chunking sequence elements, however, can also come at a cost when the sequence is probabilistic.
By assuming deterministic transitions between the within-chunk items AB, participants might lose fine-grained statistical
information about single-item instructions and thereby occasionally miss between-chunk transitions such as AC. This, in turn,
can decrease their accuracy.

We propose a model that trades off between speed and accuracy when performing SRTs. Our model calculates the utility
of acquired chunk representations as a weighted sum of how well they capture the statistical structure in the SRT (accuracy)



and whether they permit faster responses (speed). Our model then iteratively decides whether or not to chunk consecutive
items. This model makes two distinct predictions. First, in environments where deterministic chunks exist, adding them to the
representation is beneficial because they speed up reaction times without losing accuracy. Thus, people should chunk more in
environments with more or longer chunks. We test and verify this prediction in our first experiment by training participants on
sequences containing underlying chunks. The results of this experiment suggest that subjects adapt their chunking behavior
to the underlying chunks in the sequence. A second prediction is that it can be rational to learn chunks in cases where the
underlying environment is non-deterministic and does not contain any chunks. Since chunking frequently co-occurring events
improves reaction time at the cost of overall accuracy, chunking can be a strategy to act faster. Thus, as the utility of speed
increases (at the cost of accuracy), participants might also chunk consecutive elements more often and learn longer chunks. We
test and verify this prediction in a second experiment by training subjects on sequences generated from a first-order Markovian
transition matrix with “illusory” chunks while instructing one group to focus on speed and the other group to focus on accuracy.
The results of this second experiment suggest that the group focusing on speed chunked more than the group focusing on
accuracy. Our results shed new light on the benefits of chunking and pave the way for future studies on structural inference in
statistical learning domains.

Serial Reaction Time Task
We study chunking in a serial reaction time task (SRT, see Fig 1b). Participants are instructed to press keys corresponding to a
sequence of cues that appear on the screen. The instruction cross turns green after a correct keypress and red after an incorrect
keypress. The subsequent trial starts after a 500ms response-to-stimulus interval. The task starts with two baseline blocks
followed by six training blocks and ends with two test blocks. Each block consists of 100 trials. For both experiments, the same
generative mechanism produces the baseline and the test blocks. To study whether participants’ chunking behavior adapts to
task demands in an SRT task, we manipulate various properties of the training blocks to examine how they affect behavior in
the test block, using the baseline block as a comparison. The observed differences between the test and baseline blocks reflect
the changes in representations elicited by the training blocks.

The instruction sequences in the baseline and test blocks across both experiments are generated from a non-deterministic,
first-order Markovian transition matrix between the four instruction keys. In particular, out of all 16 transitions specified
between the four keys, the transitions from A to B and C to D are highly probable (P = 0.9), and the transitions from B to C
and from D to A are medium probable (P = 0.7) (see Fig 1c). In this way, participants often observe reoccurring sequence
segments such as AB and CD and could possibly perceive them as “illusory" chunks, even though no such chunks truly exist in
the generative model.

We manipulate the training block sequences across the two experiments. In Experiment 1, three groups of participants
were trained on sequences containing no chunks (independent), chunk AB (size 2 chunk), or chunk ABC (size 3 chunk). In
Experiment 2, the same “illusory” transition matrix generates the training block sequences but the instructions differ across the
two experimental groups. One group is instructed to respond as accurately as possible, while the other is instructed to respond
as fast as possible. In order to control for motor effects due to hand and finger dominance, the instructions “A", “B", “C", “D"
are randomly mapped to the keys “D", “F", “J", “K" for individual participants. In the next section, we discuss the predictions
of our rational model of chunking for the two different experiments and their conditions.

A rational model of chunking
In the SRT, single instructions z out of an instruction set Z are presented sequentially. We told participants to press the
corresponding key as soon as a new instruction appears. The subsequent instruction shows up in a fixed interval after a
participant’s completion of the previous trial. The model learns a set of chunks C = fc1; :::;cng and uses the set to parse the
sequence. It evaluates the probability P(c) of parsing each chunk c and the conditional probability P(c jjci) that c j follows ci
for every pair of chunks.

The set of chunks C is initialized as the set of available single instructions Z at the beginning of all simulations. The model
updates this set by potentially concatenating existing pairs of chunks in C. Adding a chunk expands the parsing horizon as
the rest of the within-chunk items are predicted to deterministically follow the initiation item of the chunk. Therefore, the
subsequent within-chunk items are expected to be upcoming in the following trials. The model’s accuracy might diminish if
the subsequent instructions are inconsistent with the predicted within-chunk items. We relate subsequent item predictions to
reaction times in the next section, and then explain the process by which a rational model updates chunks based on the trade-off
between reaction times and accuracy.

Accounting for Reaction Times
We use a linear ballistic accumulator (LBA) model to simulate reaction times (RT). LBAs are a common class of multi-choice
models23, 24. In the LBA, each choice corresponds to an evidence accumulator, translated to each four possible key-presses in
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Figure 1. a) Task structure for both experiments. Six training blocks are sandwiched between two baseline and two test blocks.
The baseline and test blocks contain instruction sequences generated from the “illusory” transition matrix in c). b) Participants
are instructed to press the corresponding key on the keyboard according to trial-by-trial displayed instructions. They are given
feedback on their performance, including accuracy and reaction times before the subsequent trial. c) A non-deterministic,
“illusory” transition matrix of the four possible key-presses is used to generate instruction sequences for the baseline and test
blocks for both experiments. The generative transition matrix with the two high (from A to B, C to D) and two medium
transition probabilities (from B to C, D to A) produces “illusory" chunks that can be perceived as frequently occurring. To
control the effect of habitual presses from consecutive fingers, a random mapping from “A", “B", “C", “D" to “D", “F", “J",
“K", is generated independently for each participant. d) The instructions for training blocks differed between the two
experiments and corresponding groups. In Experiment 1, participants were divided into three groups who learned independent,
size 2, and size 3 chunks from a predefined set of chunks with equal probability. In Experiment 2, the instructions in the
training group were generated from the “illusory” transition matrix. One group was instructed to act as accurately as possible
and the other groups was instructed to act as fast as possible.

our task. At every trial of the SRT task, each evidence accumulator starts with an initial evidence k = log(P(zi)), which reflects
the model’s prediction on the upcoming instructions. The trials are divided into within-chunk trials and between-chunk trials.
For a within-chunk trial, the prediction for the within-chunk item is the initial evidence for the accumulator log(1), the rest
being log(e). Note that the model still integrates information from the SRT instructions but with a high offset which biases it to
choose the response which is consistent with the chunk, even if it is inconsistent with the instructed item. This term encourages
the model to create longer chunks to reduce the average reaction time.

For a between-chunk trial, the initial evidence for each accumulator zi is determined by the transition probability P(cijc j)
of the chunk ci that initiates with the accumulator zi, given the previously parsed chunk c j. All response accumulators start
from the initial evidence, and drift towards the decision threshold with positive drift rates vA;vB;vC;vD sampled from a normal
distribution with mean vinstruction and standard deviation s . To simulate the RT of a particular trial, the current instruction

3/20



w = 0 (Accurate)

A

B

C

D

A B C D A B C D
w = 1 (Fast)

Accurate Fastw

Experiment 1

Sequence: B A CD AB C DC D A …

BA C

A B C D

ℒ = wRt + (1 − w)Err

B D

ℒnew

ℒold

ℒnew ≤ ℒold

BA B C D D Transition Entries 
with the biggest 
joint probability

a) b)

c)

Marginal

A

B

C

D

Transition

Low 

High 
A

B

C

D

A B C D

d) Experiment 2

Figure 2. a) Chunking mechanism of rational model. The model keeps track of marginal and transitional probabilities among
every pair of pre-existing chunks, and combines chunk pairs that yield the greatest joint probability as the next candidate to be
chunked together. At the start, the four different keys are initialized to be the primitive chunks. A loss function that trades off
reaction times and accuracy is evaluated on the pre-existing set of chunks. If a chunk update reduces the loss function, then the
two pre-existing chunks are combined together. A parameter w determines how much more the model weighs an decrease of
reaction times compared to an increase in accuracy. b) Example model simulations of learning instruction sequences of
Experiment 1. Because the transition AB occurred frequently, the model proposes this transition as a possible chunk. c) Model
simulation for Experiment 1. Bars represent the probability of a particular chunk parsed in a simulation over the whole
experiment. Note that these bars can be arbitrarily increased by changing w while the qualitative results remain the same. d)
Model simulation for Experiment 2. Top: Average chunk length of different simulations when increasing w from 0 (optimizing
only accuracy) to 1 (optimizing only speed). As w increases the average chunk length increases, indicating that the model
learns longer chunks when asked to care more about acting fast. Bottom: Transition probabilities learned by model with w = 0
and w = 1, corresponding to the rational maximization of accuracy and speed. If the model tries to act as accurately as possible,
then it recovers the true transition probabilities of the “illusory” transition matrix. If the model tries to act as fast as possible,
then sets the medium and high transition probabilities to be 1, i.e. deterministic. All results are averaged across 120
independent simulations. Error bars represent the standard error of the mean.

carries the highest drift rate vinstruction = 0:5. The evidence accumulators corresponding to the other instructions have an equal
but lower drift rate v:instruction = 1�vinstruction

3 . The drift rates for all accumulators sum up to 1. For example, if the current
instruction is A, then vA = 0:5, vB = vC = vD = 0:5

3 . Evidence accumulation terminates when a positive response threshold b is
first crossed by any accumulator. The accumulator that crosses the decision threshold first becomes the overt response, and the
time it takes to reach the decision threshold is the simulated RT on that trial. In all of the model simulations, we use the same
v:instruction = 0:5, decision threshold b = 1, e = 0:01, and standard deviation s = 0:6 across all accumulators.
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