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Abstract

Contextual Multi-Armed Bandit (CMAB) tasks are a
novel framework to assess decision making in uncertain
environments. In a CMAB task, participants are presented
with multiple options (arms) which are characterized by
a number of features (context) related to the reward as-
sociated with the arms. By choosing arms repeatedly
and observing the reward, participants can learn about
the relation between context and reward and improve
their decision strategy. We present two studies on how
people behave in CMAB tasks. Within a stationary en-
vironment, we find that participants are best described
by Thompson Sampling-based Gaussian Process mod-
els. This decision rule incorporates probability match-
ing to the expected outcomes derived from a rational
model of the task and it is especially well-adapted to
non-stationary environments. In a dynamic CMAB task
we again find that participants are best described by
probability matching of Gaussian Process expectations.
Our findings imply that behavior previously referred to
as “irrational” can actually be seen as a well-adapted
strategy based on powerful inference algorithms.
Keywords: Decision Making, Learning, Exploration-
Exploitation, Contextual Multi-Armed Bandits

Introduction
Multi-armed bandit tasks have proven a useful frame-
work to study learning and decision making (e.g.,
Steyvers et al., 2009). In a multi-armed bandit task,
participants repeatedly choose between multiple options
(arms) which have an associated reward and only the re-
ward of the chosen option can be observed. Performing
well in these tasks requires a fine balance between explo-
ration (choosing arms in order to learn about their asso-
ciated rewards) and exploitation (choosing arms which
are thought to provide the maximum reward). In stan-
dard multi-armed bandit tasks, there is no additional in-
formation about the rewards that can be expected from
an arm. In real life, such information is often present.
For instance, when choosing a restaurant to eat in, there
are various cues to the quality of the food on offer, such
as the number of customers, the price of the dishes, the
location of the restaurant, etc. These features provide
contextual information that allows people to form expec-
tations about the satisfaction the restaurant will provide.
Contextual multi-armed bandits (Li et al., 2010) are a
natural extension of classic multi-armed bandits and it
is surprising that not much is known about learning and
decision making in these tasks.

In what follows, we will introduce the Contextual
Multi-Armed Bandit (CMAB) task and assess how par-
ticipants perform in two different versions thereof. The
experimental tasks can be approached as both a con-

textual bandit as well as a restless bandit (in which the
average rewards associated with the arms vary over time)
by ignoring contextual information, but are designed
such that only taking the context into account will lead
to above-chance performance. We will show that hu-
mans are able to learn well within the CMAB and are best
described by sensitive exploration-exploitation behavior
based on probability matching of choices to the predic-
tions of non-parametric Bayesian models (Srinivas et al.,
2009). These models do not try and learn one particu-
lar parametric structure, but rather a distribution over
different generating mechanisms in a particular environ-
ment (see Gershman & Blei, 2012). Thompson sampling,
a form of probability matching, offers a simple yet pow-
erful way to balance exploration and exploitation, espe-
cially in non-stationary environments (Agrawal & Goyal,
2012; Speekenbrink & Konstantinidis, 2015). Our sec-
ond experiment shows that the evidence for our model is
even more pronounced in a dynamic environment where
participants’ choices influence future outcomes.

Contextual multi-armed bandits

A CMAB task can be seen as a game in which in each round
t = 1, . . . , T , an agent observes a context st ∈ S from a
set S of possible contexts and has to choose an action
at ∈ A from a set A of possible actions. Afterwards, she
receives a reward yt = f(st, at) + εt and it is her task to
take those actions that produce the highest reward. The
expected reward depends on the context, such that the
agent has to learn the underlying function f ; sometimes,
this may require the agent to choose an action which is
not expected to give the highest reward, but one that
might provide useful information about f , thus choosing
to explore rather than exploit.

For an agent who ignores the context st, the task
would appear as a restless bandit task, as the rewards
associated with an arm will vary over time due to the
changing context. Learning the function f will make
these changes in reward predictable and choosing the
optimal arm easier. As it is not given that participants
will learn the function, we will compare models of their
behavior which are either context-blind and only learn
based on direct feedback of the chosen arms, or contex-
tual and learn the function relating context to reward.
All models are based on inferring a predictive distribu-
tion of the reward yk,t+1 on trial t+1 associated with arm
k from the previous rewards y1:t = (y1, . . . , yt), chosen
arms a1:t, and contexts c1:(t+1). For all models consid-
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ered here, this predictive distribution is a normal distri-
bution

p(yt+1|y1:t, a1:t, c1:(t+1)) = N (Mt+1, Vt+1) (1)

but the models differ in how they compute the mean
Mt+1 and variance Vt+1.

Learning

Context-blind learning Context-blind models only
respond to the observed outcomes over time thereby ig-
noring the context completely.

µ-tracking The first context-blind model is based on
tracking the mean µk reward associated to each arm k.
The Bayesian µ-tracking model computes, on each trial,
the posterior distribution of the mean and was imple-
mented by a mean-stable version of the Kalman filter
described next (by setting σ2

ζ = 0).

Kalman filter Unlike the model above, the Kalman
filter is a suitable model for tracking a time-varying
mean. It is based on the following structural model

µk,t = µk,t−1 + ζk,t ζk,t ∼ N (0, σζ)

yk,t = µk,t + εk,t εk,t ∼ N (0, σε)

The mean of the predictive reward distribution of an arm
k is computed as

Mk,t = Mk,t−1 + δk,tKk,t[yt −Mk,t−1] (2)

where δk,t = 1 if arm k was chosen on trial t, and 0
otherwise. The “Kalman gain” term is computed as

Kk,t =
Sk,t−1 + σ2

ζ

Sk,t−1 + σ2
ζ + σ2

ε

where Sk,t is the variance of the posterior distribution of
the mean reward, computed as

Sk,t = [1− δk,tKk,t][Sk,t−1 + σ2
ζ ] (3)

The variance of the predictive distribution is

Vt = St + σ2
ζ + σ2

ε (4)

When fitting the model to participants’ behavior, prior
means and variances were initialized to Mk,0 = 0 and
Sj(0) = 1000, while σζ and σε were estimated by maxi-
mum likelihood.

Contextual learning The contextual models learn
the functions fk that map the context to the rewards.
We will consider two contextual models: linear and
Gaussian Process regression.

Bayesian linear regression Linear regression as-
sumes the expected reward of an arm is an addi-
tive function of the m attributes of the context st =
(s1,t, . . . , sm,t):

ykt = fk(st) + εk,t = β0 +

m∑
i=1

βisi,t + εk,t

Bayesian linear regression starts with a prior distribu-
tion on the parameters βi, i = 0, . . . ,m and, from the
contexts s1:t and rewards y1:t infers the posterior distri-
bution over these parameters. These can then be used
to compute the predictive reward distribution (1), with
mean

Mk,t =
1

σ2
st+1

>A−1Sy (5)

and variance

Vk,t = st+1
>A−1st+1 (6)

where A = σ−2SS> + Σ−1, with S being the context
and y the outcomes observed so far.

Gaussian Process regression The second class of
used models is non-parametric. Instead of postulating a
specific parametric form, Bayesian non-parametric mod-
els implicitly assume that the function can be repre-
sented by an infinite number of parameters and let the
data speak directly by the means of Bayesian inference.
One example of a non-parametric model in the functional
domain is a Gaussian Process (Rasmussen, 2006).

A Gaussian Process (henceforth GP) is a collection of
random variables from which every finite marginal dis-
tribution is multivariate Gaussian. A Gaussian Process
can be expressed as

f(s) ∼ GP
(
m(s), k(s, s′)

)
. (7)

where m(s) = E[f(s)] is the mean function and k(s, s′) =
E[(f(s)−m(s))(f(s′)−m(s′))] the covariance function.
We assumed a squared exponential kernel

k(s, s′) = exp

(
− (s− s′)2

2λ2

)
(8)

as covariance function with the lengthscale parameter λ.
The predictive reward distribution (1) has mean

Mk,t = K(st+1, S)[K(S, S) + σI]−1y (9)

and variance

Vt = K(st+1, st+1)

−K(st+1, S)[K(S, S) + σI]−1K(S, st+1) (10)

where K is the covariance matrix, S is the context seen
so far, and σ is the noise level.
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Decision strategies

We will consider two strategies to make decisions in a
CMAB based on the expected outcomes according to the
above learning models: the Upper Confidence Bound
strategy and Thompson Sampling.

Upper Confidence Bounds (UCB) The upper con-
fidence bound (UCB) algorithm, which has been shown
to perform well in many real world tasks (Krause &
Ong, 2011), balances the current expected value and the
variance per arm and chooses the arm with the high-
est upper confidence bound. The UCB-algorithm can
be described as a selection strategy with an exploration
bonus, where the bonus depends on the 95% confidence
interval of the estimated mean reward. As the UCB-
algorithm is essentially deterministic while participants’
decisions are expected to be more noisy, the following
Softmax-transformation was used when fitting the strat-
egy to participants’ behavior

p(at = k) =
exp{γ(Mk,t + 1.96

√
Vk,t)}∑n

i=1 exp{γ(Mi,t + 1.96
√
Vi,t)}

(11)

The temperature parameter γ governs how consistent
participants choose according to the values generated
by the different models and was estimated by maximum
likelihood.

Thompson Sampling Thompson sampling chooses
each arm according to the probability that it provides
the highest reward out of all arms in a particular con-
text (May et al., 2012). This is a form of probability
matching. The algorithm can be implemented by sam-
pling for each arm a reward from the predictive reward
distribution (1) and choose the arm with the highest
sampled reward. Even though this model seems rela-
tively simplistic, it can describe human choices in (non-
contextual) restless bandit tasks well (Speekenbrink &
Konstantinidis, 2015). Whereas psychology has gener-
ally viewed probability matching as an inferior decision
strategy, Thompson Sampling has been shown to per-
form well in bandit tasks and can easily adapt to chang-
ing environments as it keeps on exploring other options
over time.

The probability of an arm to be chosen can be ex-
pressed as

p(at = k) = p(∀j 6= k : yk,t ≥ yj,t) (12)

and computation from the predictive reward distribu-
tions is straightforward (see Speekenbrink & Konstan-
tinidis, 2015).

Hypotheses

We conducted two experiments to test the following 3
hypotheses:

H1: Participants will manage to learn within the intro-
duced CMAB-setting and therefore be better described
by contextual than by context-blind models.

H2: Participants will approach contextual learning in a
non-parametric fashion, allowing them to potentially
learn different types of functions. Therefore, partici-
pants will be better described by the Gaussian Process
than by the linear regression model.

H3: Instead of maximizing output by a deliberate mean-
variance trade-off, participants approach dynamic de-
cision making problems using a probability match-
ing heuristic. Thus, they will be best described by
Thompson sampling.

Whereas H1 is based on the assumption that partici-
pants can learn the true functions in the CMAB setting,
H2 follows recent successful attempts to describe func-
tion learning as non-parametric by Gaussian Process re-
gression (Griffiths et al., 2009). That participants are
better described by probability matching expected out-
comes instead of a mean-variance trade-off (H3) has been
shown by Speekenbrink & Konstantinidis (2015) in a
large model comparison study within the restless ban-
dit setting.

Experiment 1 : Stationary CMAB

The first experiment was designed to test if participants
can learn the functions in a stationary contextual bandit
task.

Task

In the task, there were four different arms that could
be played. In addition, three binary variables, sj,t,
j = 1, 2, 3, were introduced as the general context. These
variables could either be on (+) or off (-). The outcomes
of the four arms were dependent on the context as fol-
lows:

y1,t = 50 + 15× s1,t − 15× s2,t + ε1,t

y2,t = 50 + 15× s2,t − 15× s3,t + ε2,t

y3,t = 50 + 15× s3,t − 15× s1,t + ε3,t

y4,t = 50 + ε4,t

with εk,t ∼ N (0, 5). Thus, the reward was a different
linear function fk(st) of the context st = (s1,t, s2,t, s3,t),
producing an outcome fk(st) + εk,t.

On each trial, the probability that a context feature
was on was set to p(sj,t = +) = 0.5. The functions fk
were deliberately designed such that the expected reward
over all possible contexts are identical with E[yk,t] = 50
in order to avoid first order stochastic dominance of
context-blind choices. This means that the only way to
gain higher rewards than the average of 50 is by learn-
ing how the context features influence the rewards. The
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Figure 1: Screenshot of Experiment.

context-blind strategies therefore would not perform bet-
ter than chance. Moreover, introducing an arm that only
returns the overall mean with some added noise (Arm 4)
helps us to distinguish even further between contextual
and context-blind models. As context blind models only
take the outcome into account, they should prefer Arm
4 as it produces the same mean over time, but exhibits
less variance and therefore second-order dominates all
the other arms. Contextual models on the other hand
should tend to never select Arm 4 as taking the context
into account will generally lead to outcomes which are
better than the overall mean.

Participants

47 participants (26 males, age: M = 31.9, SD = 8.2)
were recruited via Amazon Mechanical Turk and re-
ceived $0.3 plus a performance-dependent bonus of up
to $0.5 as a reward.

Procedure

Participants were told that they had to mine for “Emer-
alds” on different planets. Moreover, it was explained
that at each time of mining the galaxy was described
by 3 different environmental factors, “Mercury”, “Kryp-
ton”, and “Nobelium”, that could either be on (+) or off
(-) and had different effects on different planets. Partic-
ipants were told that they had to maximize the overall
production of Emeralds over time by learning how the
different elements influence the planets and then pick-
ing the planet they thought would produce the highest
outcome, given the currently available elements. It was
explicitly noted that different planets can react differ-
ently to different elements. There were a total of 150
trials and which planet corresponded to which reward
function fk was determined randomly at the start of the
experiment.

Results

The average score per round was 66.78 (SD=13.02) and
most participants (38 out of 47) performed better than
chance (an average score of higher than 50) as is con-

Figure 2: Distribution of obtained rewards (score) over
participants by trial in Experiment 1.

Table 1: Average AIC, standard deviations, and the
number of participants best fit by the different models.

Model AICmean AICSD #best
Random 415.9 0 1
µ-track-UCB 392.1 39 2
µ-track-Thompson 388.1 56 3
Kalman-UCB 390.9 33 2
Kalman-Thompson 375.5∗ 50 11
Linear-UCB 387.8 34 3
Linear-Thompson 383.0 46 10
GP-UCB 389.4 34 4
GP-Thompson 381.6 42 12∗

firmed by a simple t-test against µ = 50, t(46) = 7.17,
p < 0.01. That participants actually do learn over time
while also sticking to some exploratory behavior can be
see in Figure 2, where the density for higher scores in-
creases and the density for lower scores decreases over
trials.

The overall performance of all models is shown in Ta-
ble 1. In addition to the aforementioned models, we also
included a Random baseline model, which assumes par-
ticipants decided by random uniform guessing. It can
be seen that the contextual models described partici-
pants behavior better than the two context-blind mod-
els. Altogether, 17 participants were best described by
the context-blind models, whereas 29 participants were
best described by the contextual models.

Even though the Kalman-Thompson model resulted in
the lowest average AIC-value overall, the Gaussian Pro-
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cess models described more participants best (16), more
than the linear regression models (13) or the Kalman
filter (13). The good performance of the Kalman filter
might be due to the fact that some people did mostly
try to learn on which planet they should mine, which is
also indicated by the relative large variance of the two
Kalman models. Even though there is only a small dif-
ference between the Gaussian Processes and the linear
model, it is evermore surprising as the linear model here
would be the best description of the underlying system
a priori – the task is a linear system after all. What this
tells us is that instead of approaching the problem with
a fixed parametric representation in mind, participants
might indeed apply a learning strategy that is more eas-
ily adaptable to other scenarios than a linear one.

Lastly, more people were described best by Thompson
sampling than by the UCB strategy (36 vs. 10). This
indicates that participants seem to apply this probability
matching heuristic.

Intermediate Conclusion
Within a newly introduced task called the Contextual
Multi-Armed Bandit task, we have found that partic-
ipants can best be described by probability matching
outcomes of a (close to) rational non-parametric func-
tion learning engine. Probability matching used to be re-
ferred to as “biased” or “irrational” (Stanovich & West,
2008), but can actually constitute a very sensible strat-
egy, especially in dynamically changing environments
(Agrawal & Goyal, 2012). Therefore, one would expect
that participants should still be able to perform well even
in a dynamically changing environment. The second ex-
periment was designed to test this.

Experiment 2: Dynamic Contextual
Multi-Armed Bandit

The second experiment used a similar task as before.
However, this time the reward of a given arm (planet)
was dependent on how often the particular arm had or
had not been chosen previously. The rewards were de-
termined according to the following functions

y1,t = 50 + 15× s1,t − 15× s2,t + ε1,t + ζ1(t)

y2,t = 50 + 15× s2,t − 15× s3,t + ε2,t + ζ2(t)

y3,t = 50 + 15× s3,t − 15× s1,t + ε3,t + ζ3(t)

y4,t = 50 + ε4,t + ζ4(t),

where

ζj(t) =

{
−1, if at−1 = j
1
3 , otherwise

(13)

This means that every time an arm is chosen its mean
reward decreases by 1 point while the means of the un-
chosen arms increase by 1

3 , thereby creating a dynamic
environment in which past choices directly influence fu-
ture outcomes.

Participants

47 participants (30 males, age: M = 29.1, SD = 8.6)
were recruited via Amazon Mechanical Turk and re-
ceived $0.3 plus a performance-dependent bonus of up
to $0.5 as a reward.

Procedure

The procedure was as in Experiment 1, but participants
were told that their choices could influence future out-
comes.

Results

On average, participants obtained rewards of 59.84 (SD
= 9.41). Even though this task was deliberately set up to
be more difficult, participants’ overall average score was
again above chance, t(46) = 7.17, p < 0.01. In total, 41
out 47 participants performed better than chance. Fig-
ure 3 indicates that the evidence of learning was some-
what weaker than before.

Figure 3: Distribution of obtained rewards (score) over
participants by trial in Experiment 1.

While scores tended to increase over trials, this was not
as pronounced as in Experiment 1. This might be due
to the increase in difficulty of the task, as participants
had to both learn a function and take the dynamics of
their actions into account.

The overall performance of all models is shown in Ta-
ble 2. Again, the contextual models described more
people best than the context-blind models (14 vs. 30).
Thus, even in this more complicated scenario, people
seem able to learn about the relation between the con-
text and rewards. The non-parametric models again de-
scribed more people best than the linear regression mod-
els (19 vs. 12) or the Kalman filter (19 vs. 12). Finally,
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Table 2: Average AIC, standard deviations, and the
number of participants best fit by the different models.

Model AICmean AICSD #best
Random 415.9 0 2
µ-tracking-UCB 414.5 10 0
µ-tracking-Thompson 416.8 5 0
Kalman-UCB 385.1 44 5
Kalman-Thompson 387.8 39 9
Linear-UCB 331.0 88 3
Linear-Thompson 321.1 99 9
GP-UCB 349.5 72 3
GP-Thompson 316.9∗ 104 16∗

the Thompson-sampling based strategies described more
people best than the UCB strategy (34 vs 11). Overall,
the Thompson sampling GP-model described most peo-
ple best (16) reaching a mean AIC of 316.9.

Discussion and Conclusion
We have introduced the Contextual Multi-Armed Ban-
dit (CMAB) task as a paradigm to investigate decision
making in situations where one has to learn contextual
functions and simultaneously make decisions according
to the predictions of those functions. The CMAB-task here
can be seen as a natural extension of past experiments
on learning in traditional multi-armed bandit tasks.

In both a stationary and a dynamic task, we found
that participants mostly performed above chance and
were best described as probability matching to expected
outcomes according to a rational Gaussian process func-
tion learning model. The above-chance performance
shows that participants were able to learn the relation
between context and rewards. The good performance
of the GP model opens up the field of decision making
to a powerful class of general purpose non-parametric
learning models. The good performance of the Thomp-
son sampler replicates the results of Speekenbrink &
Konstantinidis (2015) in a non-contextual restless ban-
dit task. It shows that probability matching, a behav-
ior often frowned upon as irrational, provides a sensi-
tive strategy that people might actually apply to solve
the exploration-exploitation dilemma in a range of sit-
uations. This is also what we have confirmed in our
second experiment, where participants were even bet-
ter described by a Thompson sampling algorithm in a
more dynamic scenario, where rewards depended on past
choices. In conclusion, all of our three main hypotheses
were confirmed.

This paper is only a first step into research on CMAB

problems. Future studies could try to assess how peo-
ple behave in scenarios where more context is provided
either by creating a multi-context environment (for ex-
ample, one context per planet) or by providing continu-
ous context variables (for example, values between 0 and

10). Another simple modification could be to check dif-
ferent parameterizations of the underlying functions to
differentiate even further between the different candidate
models.

Finally, we have only introduced a comparison be-
tween a linear model and a Gaussian process in what
can be described as an active learning task. In future
experiments we aim to try and compare even more elab-
orate models within this context. Using an exploration-
exploitation domain as a platform to compare models
against each other might be a useful additional approach
to decide among models from a list of many potential
candidates (Schulz et al., 2014).
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