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ABSTRACT

Humans are skillful navigators: We aptly maneuver through new places, realize
when we are back at a location we have seen before, and can even conceive of
shortcuts that go through parts of our environments we have never visited. Current
methods in model-based reinforcement learning on the other hand struggle with
generalizing about environment dynamics out of the training distribution. We ar-
gue that two principles can help bridge this gap: latent learning and parsimonious
dynamics. Humans tend to think about environment dynamics in simple terms
– we reason about trajectories not in reference to what we expect to see along
a path, but rather in an abstract latent space, containing information about the
places’ spatial coordinates. Moreover, we assume that moving around in novel
parts of our environment works the same way as in parts we are familiar with.
These two principles work together in tandem: it is in the latent space that the dy-
namics show parsimonious characteristics. We develop a model that learns such
parsimonious dynamics. Using a variational objective, our model is trained to
reconstruct experienced transitions in a latent space using locally linear transfor-
mations, while encouraged to invoke as few distinct transformations as possible.
Using our framework, we demonstrate the utility of learning parsimonious latent
dynamics models in a range of policy learning and planning tasks.

1 INTRODUCTION

Navigation comes easy to humans. We are able to maneuver through novel parts of our environ-
ments, self-locate by integrating over convoluted trajectories, and even come up with shortcuts that
traverse areas of the environment we have never visited before. Two principles seem to drive these
abilities: latent learning and parsimonious dynamics. Latent learning describes the ability to repre-
sent paths through our world not as we experience them literally, but in an abstract manner: That
is, we reason about trajectories not in reference necessarily to what we expect to see along a path,
but rather in an abstract latent space, containing information about the places’ spatial coordinates
(Tolman, 1948; Constantinescu et al., 2016). These coordinates are themselves never experienced,
but are useful representations constructed to reflect the structure of the environment we inhabit. Par-
simonious dynamics describe the fact that the rules governing how state transitions work should be
simple. We assume that moving around in novel parts of our environment works the same way as in
parts we are familiar with. These two principles work together in tandem: it is in the latent space
that the dynamics show parsimonious characteristics.

We extend these ideas to the more general framework of learning latent dynamics models for re-
inforcement learning (RL). Recent advances in model-based RL have showcased the potential im-
provements in the performance and sample complexity that can be gained by learning accurate latent
dynamics models (Deisenroth & Rasmussen, 2011; Hafner et al., 2019a; Schrittwieser et al., 2020).
These models summarize the transitions that the agent experiences by interacting with its environ-
ment in a low-dimensional latent code that is learnt alongside their dynamics. By learning such
models, agents may for instance perform control by planning ahead in this low-dimensional state
space (Hafner et al., 2019b), or, if the latent states contain useful information for policy learning,
simply learn a policy over latent states rather than the original states (Ha & Schmidhuber, 2018; Lee
et al., 2020). We employ the principle of parsimony to learn a latent dynamics model that is able to
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Figure 1: Illustration of the learning problem. Environments can be embedded in an underlying
low-dimensional space, and transitions can be described by a small set of linear transformations,
like rotations and translations, information that is unavailable to the agent. The observation space S
is not informative of the underlying topological structure of the environments, and must be learnt.
Our model discovers a latent space Z̃ where state-transitions can be described by a small number of
learnt transformations.

generalize about novel transitions, and whose latent states contain information about the topology of
the environment. These latent state representations prove to be useful for policy learning, planning
and future state prediction. Moreover, we show that one can learn such latent representations of the
environment simply from encouraging the dynamics to be parsimonious, without supervision about
the underlying latent structure.

We draw inspiration from group theory, the study of transformations that preserve symmetries (Kon-
dor, 2008), to learn such latent spaces. Particularly, we adopt the framework of Quessard et al. (2020)
and Caselles-Dupré et al. (2019) where the interventions an agent can perform on its environment are
treated as transformations belonging to a group, and transitioning between states through selecting
actions is equivalent to transforming the source state with the action’s corresponding group transfor-
mation. We extend this approach by summarizing a data set of experienced transitions invoking only
a small set of different types of learned transformations. We hypothesize that a model that infers a
small set of locally linear transformations to explain global transition dynamics should be able to
generalize effectively about the transition dynamics of novel parts of the agent’s environment, and
that the latent state representations that result from embedding states onto such discovered manifolds
are beneficial for policy learning. In the end, we show that our approach outperforms alternative dy-
namics and representation learning models in planning and policy learning tasks, as well as in an
open-loop pixel prediction tasks based on the Deepmind Lab environment (Beattie et al., 2016).

2 MODEL

2.1 PRELIMINARIES

We assume that the environment is a Markov Decision Process (MDP) defined as the tuple
〈S,A,R, T , γ〉, where S is the state space, A is the set of actions, T is the transition function
describing the probability of successor states given the current state-action tuple st+1 ∼ T (st,at),
R is the reward function and γ is the discount factor. In every state, the agent selects an action
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Figure 2: Left: Illustration of model components. Right: Embeddings of environment states pro-
duced by our model, compared to those produced by a β-VAE. The VAE embeddings are learnt
without parsimony and with a reconstruction objective, making the latent space reflect the topology
of the observation space, rather than that induced by the MDP’s transition function.

according to the policy at ∼ π(st). The agent’s goal is to learn a policy π(at | st) or plan using
knowledge of environment dynamics to maximize future discounted rewards ET [

∑∞
t=0 γ

tR(st)].
The original state space of the MDP may be high-dimensional and difficult to perform RL on. We
hypothesize that constructing a low-dimensional latent space that exhibits parsimonious dynamics
is beneficial for RL in at least two ways: i) Learning a policy on the latent space π(a | zt) should
be easier since the latent states are organized such that they match the underlying, hidden topology
of the environment. ii) Planning should be possible with less experience: the gains we seek to
make here lie in exploiting the knowledge of the transformations that describe how the state variable
changes with our actions. For instance, if the agent learns that all state-transitions can be described
by a small set of transformations of the source state depending on the action, we can correctly
generalize about what the next latent state will be simply if we can predict what the appropriate
transformation of our current latent state is, given the action the agent selected.

2.2 MODEL COMPONENTS

Our model learns an encoding function fφ that maps states st to latent states zt. For the subsequent
experiments we assume a deterministic function, but it is straightforward to formulate our model as
a stochastic latent dynamics model too (see Appendix A.1). In fact, in section 5 we perform pixel
prediction with a stochastic variant of our model. Given an action at and the current latent state zt,
we seek to predict the next latent state z̃t+1. We represent z̃t+1 as the product of the current latent
state with a linear transformation matrix zt+1 ≈ Ttzt which we predict from the latent state-action
tuple (zt,at).

zt = fφ(st)

ht = gψ(zt,at)

Tt = jω(ht,at)

z̃t+1 = Ttzt

(1)

We use a probabilistic approach to learning Tt: We seek to infer the posterior distribution of a
discrete latent code ht ∼ qtψ(zt,at), given a prior ptψ(h | at) from which we can decode the
appropriate transformation Tt that describes the transition.

Posterior: qtψ(h | zt,at)
Prior: ptψ′(h | at)

(2)

We want our model to be able to recapitulate observed transitions as accurately as possible, while
maximizing the predictability of the transformations describing individual transitions in latent space
from the chosen actions alone. This is what we refer to as the principle of parsimony. We construct
qtψ(h | zt,at) as a multivariate Bernoulli distribution of dimensionality n with probability vector
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pt, which is predicted by a neural network function gψ(zt,at). The latent code ht is a binary vector
which we produce by rounding pt.

hi =

{
1, if pi ≥ 0.5

0, otherwise
(3)

The latent transition code ht is decoded with a learnt decoding function jω into the parameters of
the linear transformation matrix Tt with which we predict the next latent state. We then train the
transition encoder and decoder networks gψ and jω using a variational objective (Kingma & Welling,
2013; Hafner et al., 2019b). To backpropagate through the discrete transition representation, we
make us of the straight-through estimator (Bengio et al., 2013). Due to the discretization, this
transition representation already acts as a bottleneck on the number of transformation matrices we
can associate with each action (Van Den Oord et al., 2017). However, a chief aim of our model is to
represent the transitions of the environment with as few transformations as possible. We incorporate
this desideratum in the way we construct the variational objective for posterior inference of qtψ(h |
zt,at). We leverage a second learnt neural network function g′ψ(zt,at) to learn a prior distribution
ptψ′(h | at) where ht does not depend on the current latent state zt.

Importantly, doing so makes our prior over transformation matrices, given an action, state-invariant.
By enforcing closeness to the prior, we encourage our model to learn a latent state space such that
latent state transitions may be predicted accurately even without information about the current latent
state zt. Finally, we can construct a loss function for learning the posterior distribution as follows:

Ltransition = log p(zt+1 | ht,at)︸ ︷︷ ︸
next state prediction

+βDKL

[
qtψ(h | zt,at)‖ptψ′(h | at)

]︸ ︷︷ ︸
parsimony

(4)

The first term reflects the accuracy with which our model predicts the next latent state (as encoded
by our model) and is a function of the distance between z̃t+1 and zt+1 (see Appendix A.1). The
second term reflects how close our posterior over ht is to our state-invariant prior, scaled by the
hyperparameter β.

2.3 PARAMETERIZING TRANSFORMATIONS

We consider three types of transformations – rotations, translations and their composition. As such,
we assume that all transitions can be represented as an affine transformation of the current latent
state. We leverage a decoder network jω which takes the current latent transition code and action
tuple (ht,at) and predicts the parameters of either a rotation matrix R or a translation matrix. For
translations we predict a vector of displacement values v and predict the next latent state z̃t+1 = zt+
vt, requiring n parameters for a latent state space of dimensionality n. Parameterizing rotations is
more involved. Quessard et al. (2020) parametrize rotations with a product of n(n−1)2 2-dimensional
rotations. In our approach we predict the entries of a skew-symmetric matrix. The space of skew-
symmetric matrices form the Lie algebra of the special orthogonal group and its elements can thus
be viewed as infinitesimal rotations (Sola et al., 2018). By taking the matrix exponential of an
n× n skew-symmetric matrix, we obtain an n× n-dimensional rotation matrix R. Since the upper
triangle of a skew symmetric matrix is the negative of the lower triangle, we can parameterize the
n-dimensional rotation using the same number of parameters as Quessard et al. (2020).

2.4 LEARNING THE ENCODING FUNCTION

Encouraging the latent dynamics to be parsimonious through the KL term in equation 3 is not suf-
ficient, we also need to make sure that the condition of parsimony is not fulfilled vacuously, for
instance if the encoder maps all states st to a single latent state. A popular approach for avoiding
state collapse is to equip the model with a state decoder that tries to predict the state st from the
latent state zt (Hafner et al., 2019b; Watter et al., 2015). However, encouraging the model to learn
latent states that are easily decodable could conflict with our goal of learning a latent state space
governed by parsimonious dynamics, as generative factors of the data distribution could influence
the topology of our latent space. Instead, we opt for a contrastive objective to distinguish between
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states (Oord et al., 2018; Laskin et al., 2020), while giving our transition model the freedom to
embed states such that transitions between them can be encoded parsimoniously. Our approach is
inspired by noise contrastive estimation (Gutmann & Hyvärinen, 2010; Oord et al., 2018), which
seeks to keep a latent state zt | st predictable from the observed state, while keeping it diverse from
the distinct latent states. For a mini-batch B we construct target labels for each state st ∈ B and
corresponding similarity ratings for our encodings of them:

l(s, s′) = e−τs‖s−s
′‖2

k(z, z′) = e−τz‖z−z
′‖2

(5)

where l(s, s′) are targets and k(z, z′) are latent state similarities. Here τs and τz are scaling param-
eters quantifying how quickly state similarity decays with distance. To keep latent states diverse we
minimize the cross entropy between k(z, z′) and l(s, s′):

Lcontrastive = −
1

N

∑
s,s′∈B×B

k(z, z′) log l(s, s′) + (1− k(z, z′)) log(1− l(s, s′)) (6)

By scaling τs sufficiently high, we encourage our model to distinguish between states that are not
identical. This facilitates the learning of parsimonious dynamics: as we only require that distinct
states are encoded far enough apart, the transition model is afforded freedom to embed states so that
the condition of parsimony is satisfied. Our final loss function is then the sum of the transition loss
and the contrastive loss.

3 RELATED WORK

World models
Quessard et al. (2020) represent latent state transitions as the product of the current latent state with
elements of the special orthogonal group, i.e. a learnt rotation matrix. However, they assume that
the rotations describing state transitions are state-invariant. That is, actions can only affect the state
in a single way. We make state-invariance a soft constraint by keeping transition representations
close to a state-invariant prior, and represent latent state transitions using elements from the affine
group. Watter et al. (2015) learn to embed high-dimensional inputs in a low-dimensional space in
which the dynamics are locally linear, allowing them to plan with stochastic optimal control. Unlike
our approach, they use a reconstruction objective to mitigate state collapse, and do not regularize the
state-action representations the agent learns. Hafner et al. (2020), Hafner et al. (2019a), Kaiser et al.
(2019) and Ha & Schmidhuber (2018) learn world models with the purpose of learning policies,
either by training the agent within the world model entirely, or by extracting useful latent features
of the environment.

Planning
Dynamics models are also pervasive in planning tasks. Deisenroth & Rasmussen (2011) use Gaus-
sian process regression to learn environment dynamics for planning in a sample efficient manner.
Schrittwieser et al. (2020) learn a latent state dynamics model without a reconstruction objective to
play chess, shogi and Go using Monte Carlo Tree Search. Hafner et al. (2019b) learn a recurrent
state space model, representing latent states both with a deterministic and stochastic component, and
perform planning in pixel environments using the Cross Entropy method. Our approach extends on
previous work by building latent state spaces that facilitate planning with incomplete knowledge of
the environment. This affordance is due to the latent state space being organized such that transitions
can be described with a sparse latent code.

Disentangled representations
Learning disentangled representations is a popular approach for building latent variable models
(Higgins et al., 2016; Burgess et al., 2018).Higgins et al. (2018) propose a group theoretic definition
of disentangled representations and Caselles-Dupré et al. (2019) argue that learning symmetry based
disentangled representations requires interactions with the environment. Our model can be viewed
as learning a latent state space whose dynamics are described by a small number of transformations
belonging to the affine group.
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Navigation
We argue that the ability to navigate could be supported by learning parsimonious dynamics. Us-
ing an RL framework, Mirowski et al. (2016) learn to navigate to goal locations in 3D mazes with
pixel inputs, for which they rely on auxiliary depth prediction and location prediction tasks. Banino
et al. (2018) use velocity and head direction information to learn map-like representations of envi-
ronments, allowing them to generalize about novel shortcuts to goals. However, biological agents
do not usually get information about how close they are to boundaries, their direction of travel, or
what their current spatial location is. Rather, these variables must be inferred from interactions with
stimuli of much higher dimensionality. We propose a method for learning the latent spatial layout of
environments and generalize about their transition dynamics from the principle of parsimony alone,
without supervision or additional information about the aforementioned latent variables.

4 EXPERIMENTS

We test our model’s ability to learn latent spaces and dynamics that are useful for policy learning
and planning. We designed three environments with different topological properties. In all envi-
ronments the agent is tasked with navigating to a fixed goal location from a fixed starting location,
and once it has arrived at the goal location, stay there for the remainder of the episode. The action
space consists of the five actions A = {LEFT,RIGHT,UP,DOWN,STAY }. The actions are
represented as one-hot encoded vectors to not reveal any information about the transition function
of the environment. The agent moves around on the grid by selecting a cardinal direction, which
moves the agent one unit in the respective, latent direction. The latent coordinate features of the
states are unobservable to the agent. With the STAY action the agent stays put on the current state.

Environment states are represented as random vectors drawn from a multivariate Gaussian s ∼
N (µ, I) with a diagonal covariance matrix. These are the vectors that the agent ‘observes’ when
occupying a state, and not, for instance, a top-down view of the environment. The vectors are drawn
when environments are initialized, and then remain fixed for the duration of an experiment. Gener-
ating the state vectors from an isotropic Gaussian makes the observation space independent of the
underlying hidden variable describing the agent’s position. This is a key property of our tasks: We
maintain that the ability to learn the group properties of an environment in a way that is disassociated
from learning the generative factors of the observations that the states emit is important. Generally,
the manifold that the state-observations lie on may be entirely different from the manifold defined
by an environment’s transition function. We hypothesize that structuring the latent state space to
reflect the topology of the environment is beneficial for solving several RL tasks.

4.1 GRIDWORLDS

We designed two 11 × 11 state discrete gridworlds (see Figure 3). On the boundary states of the
gridworld there were walls. One of the gridworlds was partitioned into four rooms by walls. Infor-
mation about whether the agent was facing a wall in any of the four cardinal directions was encoded
as a binary vector, which we concatenated with the initial random state vector to produce what the
agent sees when occupying a state.

4.2 TORUS

We designed a discrete torus world similar to the gridworld by connecting the gridworlds boundary
states to the corresponding boundary states on the opposite end (see Figure 3). The torus contained
13× 13 states and no boundaries.

4.3 MODEL FREE LEARNING

We designed a model free learning task for each environment. In each task, the agent needs to
learn to move from a starting state sstart to an unknown goal state sgoal and stay there for the
remainder of an episode which lasted for 250 timesteps. Each state except for the goal state yields a
reward of −1 when exited except for the goal state which yields a reward of +1. The agent learns
a policy which takes it to the goal location using the Soft Actor Critic (SAC) algorithm (Haarnoja
et al., 2018) adapted for discrete action spaces (Christodoulou, 2019) (see Appendix A.6 for details).
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Figure 3: Top: The environments have a starting state (yellow) and a goal state (red). Bottom:
The corresponding learning curves of a SAC agent learning policies over three types of latent state
spaces, averaged over 10 seeds: Ours has a latent state space constrained to be such that dynamics
are parsimonious. Baseline has no representation learning objective. VAE learns a latent state space
using the β-VAE model, with next state prediction as an auxiliary task.

Crucially, the agent learns a policy over its latent state representations π(a | z) as opposed to the
observations the environment emits. We train agents for 200 episodes in the gridworld, 500 episodes
in the four rooms environment, and for 250 episodes in the torus world. Each episode lasts for
250 steps. The agents are trained as described in Algorithm A.5. We compare our model to two
alternative representation learning approaches: i) The β-Variational Autoencoder (Higgins et al.,
2016; Lee et al., 2020) which learns disentangled probabilistic embeddings by reconstructing the
states as well as performing next state prediction. Next state prediction is performed by multiplying
the current latent state with a predicted affine transformation matrix, however, without regularizing
the state-action representation to be parsimonious. ii) A baseline feedforward neural network for
which no representation learning objectives influenced latent state representations except the actor
and critic losses. Our model achieves the best total score summed over episodes in all environments,
averaged over 10 seeds. We fine tuned the regularization coefficient β in equation 4 and the β of the
VAE model. Comparisons revealed that regularizing the latent state-action representation ht proved
beneficial in all environments except the Four Rooms environment in which a β value of 0 proved
slightly better than the next best regularized implementation of our model.

4.4 PLANNING

For each environment we generated a set of planning problems where the agent starts in a random
state, and needs to plan a sequence of actions to reach a goal state and stay there for the remainder
of an episode which lasted for 50 timesteps. The agent has no knowledge of environment dynamics
initially except for what the goal state is, and needs to learn a viable dynamics model as it engages
with the task. The agent attempts to solve the planning problems by encoding the goal state into its
learnt latent state space zgoal and by simulating trajectories that take it to the goal. The agent esti-
mates the return of a trajectory as the sum of latent state occupancies weighted by the exponential of
their negative distance to the latent goal state G =

∑H
t=0 e

−‖zt−zgoal‖2 . After an episode, the agent
fits its dynamics model to the observations it gathered through executing its plan. Each planning task
consists of 30 such planning problems, varying with difficulty, as some goal locations are further
away from the agents’ starting location. Following Hafner et al. (2019b), we use the Cross Entropy
Method (CEM) (Rubinstein, 1999) as our planning algorithm (see A.7). We verified that it was able
to solve most tasks when using the true environment dynamics with a moderate planning budget.
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Figure 4: Top row: The score achieved by the planning agent using different dynamics models,
averaged over the 30 tasks and 10 seeds: Our approach beats the deterministic recurrent world
model (RNN) and the stochastic world model (SMM) trained with a disentanglement objective.
Error bars show standard deviation computed across seeds. Red lines show score of planning agent
using the true environment dynamics. Bottom row: The score achieved for each task, dots indicate
individual samples across 10 seeds, and curves are smoothed using a Gaussian filter with standard
error computed across seed, with lengthscale σ = 2.

We compare our model to alternative latent dynamics models: A deterministic RNN and a stochastic
latent state model (Hafner et al., 2019b) trained with a β-VAE objective (Higgins et al., 2016).
All models represent state transitions as the product of the current latent state with a learnt affine
transformation matrix, but lack the parsimony constraint at the core of our model. The models were
trained as described by Algorithm A.7. As with the policy learning task, we found that our model
achieved the best score pooled over the 30 planning tasks and 10 seeds. Moreover, regularizing ht
proved beneficial in all environments, providing further evidence that parsimonious dynamics are
beneficial for planning.

5 LEARNING PARSIMONIOUS DYNAMICS FROM PIXELS

We sought to evaluate our model’s ability to perform long-term future state prediction in an envi-
ronment with pixel inputs. For this task, we relied on the Deepmind Lab environment, a challenging
partially observable environment with image observations (Beattie et al., 2016). To make our model
suitable for pixel prediction, to mitigate the partially observability, and to make it comparable to
other models in the literature, we used the stochastic variant of our model (see Appendix A.1) and
image reconstruction loss rather than a contrastive objective to avoid latent state collapse. Further-
more, we endowed it with a convolutional neural network image encoder, a transpose convolutional
neural network decoder, and recurrent neural network whose outputs were concatenated with the
inferred latent state for pixel prediction (see Appendix A.3).

As a comparison model we chose the Recurrent State Space Model (RSSM) from Hafner et al.
(2019b) (see Appendix A.4). When applicable, we also used the hyperparameters they provide for
our model. We trained both models to reconstruct sequences of images, conditioned on previous
image and action observations, collected from an agent executing a random policy for 250 episodes
in the seekavoid arena 01 environment. No velocity or location information was provided
to the agent. We then made the models perform open-loop prediction of 30 test sequences of 149
environment steps, that were not in the training set. We evaluated open-loop reconstruction errors
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Figure 5: Open loop prediction of future states in the Deepmind Lab environment. Our model is
better at predicting transitions in latent space, and reconstructing images from imagined latent states.

and the KL divergence between predicted future latent states and closed-loop inferred latent states
from observations KLD [q(z̃t+1 | z≤t,u≤t, a≤t)‖p(zt+1 | st+1ut)], where ut is a deterministic la-
tent variable provided by the recurrent neural network. Our model generalized better to the test
sequences, achieving both lower KL divergences between predicted and encoded states, and lower
average reconstruction error in the open-loop prediction task. This provides evidence for the utility
of learning parsimonious dynamics in more challenging pixel environments as well.

6 DISCUSSION

In the current paper, we introduced a model that learns a parsimonious set of transformation matrices
to describe the dynamics of MDPs in a latent state space. Learning a world model whose states are
organized according to this principle proved beneficial in a policy learning task, a planning task and
a video prediction task. With the objective of carving the environment at its joints rather than the
observations its states emit, the learnt latent states contained information that was valuable for policy
learning. Moreover, planning in the learnt latent space became feasible having observed fewer state
transitions: This is because the agent could systematically generalize about the dynamics of parts
of the environment that were not yet explored exhaustively. We have shown that simply endowing
the dynamics model’s objective with a term encouraging parsimony was sufficient to produce latent
spaces that display useful characteristics.

We investigated the utility of parsimonious dynamics in simpler environments whose transitions
could indeed be characterized by a small set of linear transformations. A limitation of our approach
is that the environments we investigated were rather simplistic compared to the rich environments
humans and other state-of-the-art models have been shown to be able to navigate through. To remedy
this we provided promising initial evidence that parsimonious dynamics can facilitate future state
prediction in a Deepmind Lab environment. In future work we intend to scale up our approach to
also perform policy search in similarly rich environments. A further limitation is that the degree of
sparseness with which the model tries to recapitulate transitions is controlled by the KL scaling term
β. Though we avoid assuming that dynamics are completely state-invariant, we still have to tune β.
In future work, we seek to address this issue by adaptively regulating the complexity of our learnt
dynamics to reflect the complexity of the environment.

The principle of parsimony was initially motivated from the viewpoint of cognitive science. Tol-
man (1948) showed that rats preferred a novel shortcut over a repeatedly reinforced longer route
to a goal location, hypothesizing that animals learn and use latent representations of their environ-
ment that must contain assumptions about how they are structured. Seminal work in neuroscience
demonstrated the existence of neurons selectively tuned to specific spatial positions (place cells),
and others that represent global geometrical information about the environment (grid cells), repre-
sentations that were also found in artificial agents trained to navigate in Euclidean spaces (Banino
et al., 2018; Cueva & Wei, 2018). Recent cognitive neuroscience studies revealed that humans rely
on cognitive maps to navigate complex environments (Epstein et al., 2017), abstract spaces (Con-
stantinescu et al., 2016; Garvert et al., 2017), generalize about rewards (Garvert et al., 2021), and
draw inferences about transition dynamics in novel environments (Mark et al., 2020). Future work

9



could also investigate the role of parsimony in the mental maps that humans and other animals build
of the worlds they inhabit.
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A APPENDIX

A.1 TRANSITION LOSS

Our model can be formulated as both a deterministic and stochastic state space model. The loss
function for deterministic transitions is described in Equation 4. In the stochastic case, we produce
probabilistic state embeddings zt ∼ p(zt | st), where p is a Gaussian with mean and standard
deviation (µt,σt) = fφ(st). We construct a lower-bound on the data-log-likelihood by minimizing
either a reconstruction error term or a contrastive term, in addition to a KL term constraining the
posterior latent state to be close to the prior.

L = log p(st | zt) + βDKL [q(zt | st)‖p(z̃t | zt−1,at−1)] (7)

We allow gradients to pass through the stochastic component using the reparameterization trick
(Kingma & Welling, 2013).

A.1.1 DETERMINISTIC TRANSITIONS

If our transition model is deterministic, we define the reconstruction term based on the exponential
of the norm of the vector zerror = z̃t+1 − zt+1:

Ldeterministic transitions = ‖z̃t+1 − zt+1‖22 + e−‖z̃t+1−zt+1‖2 (8)

We found that adding the mean squared error term in the transition reconstruction helped the models
converge.

A.1.2 STOCHASTIC TRANSITIONS

In the stochastic case, we use as our transition reconstruction term the KL divergence between the
two distributions predicted for the next latent state: N (Ttµt, σ̃t+1) where σ̃t+1 = gψ(µt,at) and
N (µt+1,σt+1) = fφ(st+1), e.g.:

Lstochastic transitions = DKL [p(zt+1)‖q(z̃t+1)] +DKL [q(h | zt,at)‖p(h | at)] (9)

Our composite loss function therefore becomes the standard variational objective for training the
stochastic state space model, plus the KL term describing the divergence between our prior state
action representation p(ht) and our posterior q(ht).

A.2 DYNAMICS MODELS

For the policy learning and planning experiments we parameterized our dynamics models using
feedforward neural network encoders and decoders (when applicable), each with two hidden layers
and 1200 ReLU units Nair & Hinton (2010). The latent space the encoders projected to had 15
dimensions. The state-action variable ht, which also had 15 dimensions, was learnt using an encoder
and decoder with the same hyperparameters. When we used the contrastive loss to avoid state
collapse, we used similarity scalings τs = 100 and τz = 0.1

A.3 DEEPMIND LAB

We trained our dynamics models on 80 × 80 resolution image sequences from Deepmind Lab’s
seekavoid arena 01. The sequences were produced by an agent with a random policy. The
agent could execute six discrete actions: Move forward, backwards, left or right, and turn in both
horizontal directions. We equipped our model with a convolutional neural network for image en-
codings and a transposed convolutional neural network for image reconstructions, both with the
architecture from Ha & Schmidhuber (2018). For our recurrent neural network producing the de-
terministic latent variable ut we used a GRU (Chung et al., 2014) with 200 hidden units. The
feedforward neural networks which were used as encoders and decoders had all two hidden layers
with 200 ReLU units.
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Like in Hafner et al. (2019b), we train our model on sequences of image-action pairs: To perform
one gradient step with our dynamics models we draw B = 50 sequence chunks of length N = 50
and compute the dynamics loss using Equation 10:

L = log p(st | zt,ut)︸ ︷︷ ︸
reconstruction loss

+ β1DKL [q(z̃t+1 | zt,ut,at)‖p(zt+1 | st+1,ut)]︸ ︷︷ ︸
transition loss

+ β2DKL [q(h | zt,ut,at)‖p(h | ut,at)]︸ ︷︷ ︸
parsimony

(10)

The latent variables zt and ut had 30 dimensions each. We perform 25 gradient steps per episode,
with the transition KL term β1 = 0.1 and the parsimony KL term β2 = 0.5.

A.4 RSSM

We implemented the RSSM from Hafner et al. (2019b). The RSSM consists of the following com-
ponents:

Deterministic state model ht+1 = f(zt,ht,at)

Stochastic state model zt+1 ∼ p(ht)
Observation model st ∼ p(zt,ht)

(11)

where f(zt,ht,at) is a GRU with 200 hidden dims. The RSSM is trained similarly to our model
above, performing gradient steps on reconstructions of batches of image sequences. The loss func-
tion used to train the RSSM is the following:

L = log p(st | zt,ht)︸ ︷︷ ︸
reconstruction loss

+ β1DKL [q(zt | st,ht)‖p(zt | ht)]︸ ︷︷ ︸
transition loss

(12)

Identically to our model, the latent variables zt and ht had 30 dimensions each. Image encoding
and decoding was done with the same convolutional neural network architectures described in the
previous section. We perform 25 gradient steps per episode, drawing B = 50 sequence chunks of
length N = 50, with the transition KL term β1 = 0.1.

A.5 POLICY LEARNING

Agents were trained to maximize future reward using the actor-critic method. Both actors and critics
were parameterized by feedforward neural networks with an encoder and decoder, each of which
consisted of two hidden layers with 800 ReLU units. The policy was learnt using the following
algorithm:
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Algorithm 1 Policy learning
for each episode do

for each environment step do
zt = fφ(st)
at ∼ πθactor(zt)
rt, st+1 ∼ Env.step(st,at)
D ← D ∪ (st,at, rt, st+1)

end for
for each dynamics gradient step do

Sample batch of N tuples (st,at, st+1) ∼ D
Compute loss Ldynamics . Use objective of the relevant dynamics model
θdynamics ← θ − α∇Ldynamics

end for
for each policy gradient step do

Sample batch of M tuples (st,at, rt, st+1) ∼ D
Compute actor and critic losses Lactor,Lcritic . Use soft actor critic losses
θactor ← θactor − α∇Lactor
θcritic ← θcritic − α∇Lcritic

end for
end for

A.6 SOFT ACTOR CRITIC

The actor and critic networks were trained using the Soft Actor Critic algorithm (SAC) (Haarnoja
et al., 2018). To learn Q-values, we used two source critic networks and two target critic networks,
fine-tuned the inverse reward scale parameter α = 0.5, the number of policy gradient stepsM = 15,
batch size (150 in the gridworld and torus environments, and 350 in the Four Rooms environment)
and the target value smoothing update constant τtarget = 0.1. We trained the networks with the
Adam optimizer (Kingma & Ba, 2014), using a learning rate of 1e−4. These hyperparameters were
fine-tuned to maximize performance of the baseline agent (which had no latent dynamics model).
We used these hyperparameter settings with other models and did no further fine-tuning, except for
optimizing hyperparameters specific to the dynamics models. We trained the dynamics models using
a learning rate of 1e− 3, also using the Adam optimizer.

A.7 PLANNING

In the planning task we leveraged the Cross Entropy Method (Rubinstein, 1999) in tandem with
learnt dynamics models, using hyperparameters similar to Hafner et al. (2019b). The agents planned
over a horizon lengthH = 15, with 10 iterations I , 1000 samples J per iteration, and updating plans
using the K = 200 best samples. We trained the dynamics models using a learning rate of 1e − 3
with the Adam optimizer. To make sure the agents explored sufficiently, we used the epsilon-greedy
heuristic, scheduling ε so that the agents explored a lot early in the experiment and little late. We

made ε a function of the number of tasks played E(N) = 1 −
(
N − 1

T

)V
where N is the current

task number, T the total number of tasks and V = 2.8 a scaling term.

Below is a description of the Cross Entropy Method, drawing inspiration from Hafner et al. (2019b).
We adapt it for a discrete action setting, by optimizing the logits of a categorical distribution from
which actions are sampled.
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Algorithm 2 Planning
for each task do

sstart, sgoal ∼ S . Draw start and goal states uniformly, s.t. sstart 6= sgoal
zgoal = fφ(sgoal)

r̃(z) = e−‖fφ(s)−zgoal‖2 . Define reward function for model
εi ← E(task)
for each environment step do

zt = fφ(st)

at =

{
CEM(zt) with probability 1− εi
Random with probability εi

. Use Cross Entropy Method

rt, st+1 ∼ Env.step(st,at)
D ← D ∪ (st,at, st+1)

end for
for each dynamics gradient step do

Sample batch of N tuples (st,at, st+1) ∼ D
Compute loss: Ldynamics . Use objective of the relevant dynamics model
φdynamics ← φ− α∇Ldynamics

end for
end for

Algorithm 3 Cross Entropy Method
Require: Dynamics model p(zt+1 | at, zt), reward function r̃(z)

Initialize J logits for categorical action distributions w ∼ N (0, I), where w ∈ R|A|×H
for each iteration i = 1, ..., I do

for each action sequence j = 1, ..., J do
a1:H ∼ Softmax(w) . Sample actions
z1:H ∼ p(z1:H | a1:H−1, z1:H−1) . Simulate future states with dynamics model
r← r̃(z) . Compute rewards using reward function

end for
K = argsort{rJj=1}1:H . Get logits of K best performing samples

µ1:H ←
1

K

∑
k∈K w

k
1:H

w ∼ N (µ, I) . Sample new logits based on average logits of K best samples
end for
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