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Abstract

As children grow older, they develop an intuitive
understanding of the physical processes around
them. Their physical understanding develops in
stages, moving along developmental trajectories
which have been mapped out extensively in pre-
vious empirical research. Here, we investigate
how the learning trajectories of deep generative
neural networks compare to children’s develop-
mental trajectories using physical understanding
as a testbed. We outline an approach that allows
us to examine two distinct hypotheses of human
development – stochastic optimization and com-
plexity increase. We find that while our models
are able to accurately predict a number of phys-
ical processes, their learning trajectories under
both hypotheses do not follow the developmental
trajectories of children.

1. Introduction
More than 70 years ago, Turing (1950) famously suggested
that “instead of trying to produce a programme to simulate
the adult mind, why not rather try to produce one which
simulates the child’s? If this were then subjected to an
appropriate course of education one would obtain the adult
brain.” If we want to take Turing’s proposal seriously, we
have to ask ourselves: how do children learn?

Developmental psychologists have investigated children’s
learning in a number of different realms. One of the most
well-studied is their acquisition of physical knowledge (Bail-
largeon, 1996; 2004; Spelke & Kinzler, 2007; Lake et al.,
2017). Here, prior empirical work provides us with a precise
understanding of the stages that children undergo during
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their cognitive development (see Figure 1A for an example).
It, therefore, serves as an ideal testbed for our investigation.

In the present paper, we set out to formalize and test two
distinct hypotheses of children’s development. The first is
the idea of development as stochastic optimization, which
argues that cognitive development results from some form
of stochastic optimization procedure (Gopnik et al., 2017;
Ullman & Tenenbaum, 2020; Giron et al., 2022; Wolff,
1987). The second is the idea of development as complexity
increase, which instead stipulates that the knowledge struc-
tures involved in human reasoning become more complex
over time (Baillargeon, 2002; Binz & Endres, 2019).

First, we show how both hypotheses can be instantiated
in a β-variational autoencoder (β-VAE) framework. We
then probe models with different degrees of complexity and
optimization on physical reasoning tasks using violation-
of-expectation (VOE) methods (Piloto et al., 2018; Smith
et al., 2019). Finally, we compare the learning trajectories
of these artificial systems to the developmental trajectories
of children.

We find that even fairly generic deep generative neural net-
works acquire many physical concepts. However, the order
in which they acquire these concepts under both hypotheses
does not align well with the acquisition order of children –
neither hypothesis fully captures the learning trajectories of
children. Thus, we conclude that the investigated models
do not acquire their knowledge in accordance with Turing’s
proposal.

The remainder of this paper is organized as follows. Section
2 surveys previous literature on models of human-like phys-
ical knowledge and developmental trajectories. In Section 3,
we illustrate how to instantiate the development as stochas-
tic optimization and development as complexity increase
hypotheses in the β-VAE framework. We then apply these
models to different physical reasoning domains in Section
4. Section 5 concludes this report with a general discussion
of our findings.

2. Related work
Building models with human-like physical knowledge has
become an active research area in recent years (see Table 1
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Figure 1. A: Human developmental trajectory for support events outlined by Baillargeon (1996). The illustrations are taken from
Baillargeon (1996) and they show the physical rules acquired at the respective ages. With 3 months, infants decide based on a simple
contact or no contact rule. According to this rule, a block configuration is considered stable if the blocks touch each other. At around 5
months, infants understand that the type of contact matters. Now, only configurations with blocks stacked on top of each other are judged
as stable. At 6.5 months, they begin to also consider the overlap of the blocks. Finally, at 12.5 months they are able to incorporate the
block shapes into their judgement, relying not only on the amount of contact but also on how the mass is distributed for each block. B:
Illustration of our generative video prediction model.

for a summary). Battaglia et al. (2013) argued that human
reasoning in complex natural scenes is driven by an intu-
itive physics engine that relies on probabilistic simulations
to make inferences. Following this idea, they introduced
interaction networks – a model that performs simulations
by combining an object-centric and a relation-centric com-
ponent (Battaglia et al., 2016). In contrast to the initial
approach that relied on a hard-coded physics engine, in-
teraction networks are learnable engines, allowing them to
generalize to novel systems with different configurations of
objects and relations. In a similar vein, Smith et al. (2019)
combined a perception module that infers physical object
representations from raw images with a reasoning module
that predicts future object states conditioned on the object
representations. They found that this model matched human
performance in a number of scenarios. Lerer et al. (2016)
trained large convolutional neural networks to predict the
stability of wooden block towers as well as the trajectories
of falling blocks. They showed that the performance of such
networks exceeds that of human subjects on synthetic data.
Zhang et al. (2016) compared the intuitive physics engine of
Battaglia et al. (2013) to the convolutional neural network of
Lerer et al. (2016). They found that while convolutional net-
works are able to achieve superhuman accuracy in judging
the stability of block towers, their physical understanding is
dissimilar to that of humans.

How physical knowledge of artificial systems should be
evaluated has also received attention. Taking inspiration
from developmental psychology, Piloto et al. (2018) pro-
posed to use the VOE method to probe the knowledge of
neural networks (Baillargeon, 1996). In particular, they mea-
sured the surprise of a network after observing physically
implausible sequences. Their work was among the first to
demonstrate that the VOE method can elucidate black-box
models’ inference mechanisms. Moreover, recent intuitive
physics benchmarks have also been inspired by work in
developmental psychology. Riochet et al. (2021) presented
an “evaluation benchmark which diagnoses how much a
given system understands about physics by testing whether
it can tell apart well-matched videos of possible versus im-
possible events constructed with a game engine.” Likewise,
Weihs et al. (2022) proposed a benchmark testing for knowl-
edge about continuity, solidity, and gravity using videos
filmed in infant-cognition labs and robotic simulation en-
vironments. Finally, Piloto et al. (2022) also introduced a
data set for evaluating intuitive physics in neural networks
using the VOE method and use this data set to probe the
physical knowledge of a deep learning model equipped with
object-centric representations.

Even though developmental psychology has inspired how
to evaluate physical knowledge in neural networks, the em-
phasis of prior machine learning research has always been
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Table 1. Table summarizing previous work attempting to build models with human-like physical intuitions and work attempting to model
human developmental trajectories. Machine learning research has predominantly focused on reproducing adult-level performance, while
computational cognitive science has relied heavily on low-dimensional and static stimuli. The present paper combines the best of both
worlds.

support
events

occlusion
events

collision
events

unsupervised
learning

violation-
of-
expectation

sequential
predictions

developmental
trajectories

Work attempting to build models with human-like physical intuitions:

Battaglia et al. (2013) ✓ ✗ ✗ ✗ ✗ ✗ ✗
Battaglia et al. (2016) ✗ ✗ ✓ ✗ ✗ ✓ ✗
Smith et al. (2019) ✗ ✓ ✗ ✓ ✓ ✓ ✗
Lerer et al. (2016) ✓ ✗ ✗ ✗ ✗ ✗ ✗
Zhang et al. (2016) ✓ ✗ ✗ ✗ ✗ ✗ ✗
Piloto et al. (2018) ✗ ✗ ✗ ✓ ✓ ✓ ✗
Riochet et al. (2021) ✗ ✗ ✗ ✓ ✓ ✗ ✗
Piloto et al. (2022) ✓ ✓ ✓ ✓ ✓ ✓ ✗

Work attempting to model human developmental trajectories:

Giron et al. (2022) ✗ ✗ ✗ ✗ ✗ ✗ ✓
Averbeck (2022) ✗ ✗ ✗ ✗ ✗ ✗ ✓
Huber et al. (2022) ✗ ✗ ✗ ✗ ✗ ✗ ✓
Binz & Endres (2019) ✓ ✓ ✗ ✗ ✗ ✗ ✓

This work ✓ ✓ ✓ ✓ ✓ ✓ ✓

on reproducing adult-level performance. In contrast, com-
putational cognitive scientists also strive to build artificial
learning systems that capture the developmental trajectories
of children. Perhaps most closely related to our work is the
approach of Binz & Endres (2019) who compared trajecto-
ries of Bayesian neural networks that had access to different
amounts of data to human developmental trajectories. They
investigated both occlusion and support events and found
that the acquisition order of concepts in their model aligned
with that of children. However, in contrast to their work,
which uses an oracle to provide a supervision signal about
block stability and visibility, our approach solely relies on
an unsupervised training objective.

If we look beyond the realm of intuitive physics, we can
find other works that have attempted to model the process
of human development. Huber et al. (2022) investigated the
emergence of object recognition in children. They showed
that four- to six-year-olds are already more robust to image
distortions compared to deep neural networks trained on
ImageNet. Furthermore, children predominantly relied on
shape instead of texture for object detection, making them
more similar to adults than deep neural networks (Geirhos
et al., 2018). Averbeck (2022) pruned recurrent neural net-
works by removing weak synapses. They found that pruned
networks were more resistant to distractions in a working
memory task and made optimal choices more frequently in

a reinforcement learning setting. These results were consis-
tent with developmental improvements during adolescence,
where performance on cognitive operations improves as ex-
citatory synapses in the cortex are pruned. Finally, Giron
et al. (2022) examined a theory of development as stochastic
optimization. In particular, they combined this idea with
a model of human decision-making in multi-armed bandit
problems and demonstrated that development resembles
a stochastic optimization process in the parameter space
of this model. In contrast to these earlier models of de-
velopment, our setup uses high-dimensional visual stimuli
(i.e., video sequences) and solely relies on an unsupervised
training objective. It, therefore, more closely resembles the
actual learning processes of children in the real world.

3. Methods
In the following, we discuss how the development as
stochastic optimization and development as complexity in-
crease hypotheses can be instantiated in the β-VAE frame-
work. For the development as stochastic optimization hy-
pothesis, we train a generative video prediction model using
gradient descent. To obtain a learning trajectory of this
model, we evaluate snapshots of the model in every epoch.
For the development as complexity increase hypothesis, we
train models of different complexities by making use of the
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Figure 2. The first row shows the difference in surprise between the violated and expected test sequences given by the fully trained
model with β = 1 for the overlap condition in the support event data-set. The surprise curve is smoothed using cubic spline interpolation.
The second row shows the expected test sequence. The third row shows the violated test sequence. The last row shows the open-loop
reconstruction from the model given the first two frames.

β-VAE framework (Higgins et al., 2016). Doing so enforces
a bottleneck on the representational capacity of the hidden
representations (Sims, 2016; Bates & Jacobs, 2020), which
can be interpreted as a particular form of computational
complexity (we will discuss potential alternatives in our
general discussion). Learning trajectories for this hypothe-
sis are obtained by increasing the model’s representational
capacity, i.e., by moving from higher to lower β-values
within fully converged models.

3.1. Model architecture and objective

We use the recurrent state space model (RSSM) (Hafner
et al., 2019; Saxena et al., 2021) as an exemplary model
for our analysis. The RSSM can be seen as a sequential
version of a VAE. It maintains a latent state at each time step,
which is comprised of a deterministic component ht and
a stochastic component st (see Figure 1B). These compo-
nents depend on the previous time steps through a function
f(ht−1, st−1), which is implemented as a gated recurrent
neural network. We train our models by optimizing the
following objective:

−
T∑

t=1

Eq(st|o≤t)[ln p(ot | st)]+ (1)

β Eq(st−1|o≤t−1)

[
KL

(
q(st | o≤t) || p(st | st−1)

)]
where o≤t = o1, o2, . . . , ot is a sequence of rendered im-
ages obtained from a 3D physics engine.

For all models, the size of the stochastic hidden dimension
st was kept at 20, while the size of the deterministic hidden
dimension ht was set to 200, as in previous implementations
of the RSSM (Hafner et al., 2019; Saxena et al., 2021).
We furthermore adopted the image encoder and decoder
architectures described by Dittadi et al. (2020). We refer the
reader to Appendix A for further details about the model
architecture and training procedure.

We can use the RSSM to generate either open- or closed-
loop predictions. For open-loop predictions, the model
processes a number of initial observations to infer an ap-
proximate posterior q(st−1 | o≤t−1), followed by decoding
subsequent latent representations sampled from the prior
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Figure 3. The plot on the left shows the percentage of sequences for which the surprise for the violated sequence exceeds that of the
expected sequence for the model with β = 1 at every epoch and for each condition of the support event data set. The lines are smoothed
with a uniform kernel of size 10. The plot on the right shows the same metric for fully trained models with different β.

p(st | st−1). For closed-loop reconstructions, the decoder
is instead continuously given representations sampled from
the posterior which is updated at every time step using the
previously observed frame. We generally report results ob-
tained via open-loop predictions unless stated otherwise.

3.2. Measuring surprise

To assess whether a model has learned a specific physi-
cal rule, we make use of the VOE paradigm (Piloto et al.,
2018; 2022). For this, the model is presented with two
video sequences: a violated sequence, which constitutes a
violation according to the rule, and an expected sequence,
which is consistent with the rule. If the model has suc-
cessfully learned a specific rule, it should show a larger
degree of surprise for the violated compared to the expected
sequence. Following Piloto et al. (2022) and Smith et al.
(2019), we measure the model’s surprise using the nega-
tive log-likelihood (NLL) of observations under the model.
More specifically, for each sequence, we determine if the
NLL is larger for the violated compared to the expected
sequence for the majority of the frames. We then take the
mean over all sequences for a specific condition in order
to check whether the reconstructions of the model better
match the expected or the violated sequences. This approach
is inspired by developmental psychology and allows us to
measure a model’s surprise similar to how developmental
psychologists measure surprise in children (see Appendix B
for a discussion on different measures of surprise).

4. Results
We evaluated our models on three distinct physical pro-
cesses. For each of these processes, we generated training
data sets inspired by experiments from developmental psy-
chology using the Unity game engine (Unity Technologies,

2005). We randomly varied a number of properties to ensure
sufficient variability in the training data. We also generated
test data sets that – following the VOE paradigm – contain
pairs of violated and an expected sequences for each of the
conditions in the respective event types (see Appendix C for
a detailed description of the data generation process and a
visualization of the employed test sequences).

4.1. Support events

We began our investigations by looking at support events,
which consist of block configurations such as the ones
shown in Figure 1A. Similar tasks have been studied ex-
tensively in both the machine learning and developmental
psychology community, and they, therefore, serve as an
ideal starting point for our analyses. Each scene in our
data set contains two randomly configured blocks in a gray
room.1

Baillargeon (1996) has shown that, as infants grow older,
they make use of increasingly complex rules to decide
whether a given block configuration is stable or not (also see
Baillargeon (2002; 2004)). With 3 months, infants decide
based on a simple contact or no contact rule. According
to this rule, a block configuration is considered stable if
the blocks touch each other. At around 5 months, infants
understand that the type of contact matters. Now, only con-
figurations with blocks stacked on top of each other are
judged as stable. At 6.5 months, they begin to also consider
the overlap of the blocks. Finally, at 12.5 months they are
able to incorporate the block shapes into their judgement,
relying not only on the amount of contact but also on how
the mass is distributed for each block.

1Note that it would certainly be possible to consider more com-
plex configurations (e.g., by increasing the number of blocks), but
we deliberately made this design choice to match the experimental
paradigms used in developmental psychology.
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Figure 4. The plot on the left shows the percentage of sequences for which the surprise for the violated sequence exceeds that of the
expected sequence for the model with β = 1 at every epoch and for each condition of the occlusion event data set. The lines are smoothed
with a uniform kernel of size 10. The plot on the right shows the same metric for fully trained models with different β.

For each of the four rules for support events, we constructed
pairs of violated and expected test sequences with identical
first frames. For example, according to the overlap rule, a
block configuration should only be stable if the blocks are
stacked on top of each other with enough overlap. A test se-
quence pair for this rule shows two blocks that only slightly
overlap (see Figure 2). The expected test sequence, which
is consistent with the rule, shows the top block falling. In
contrast – and in violation of real physics – the violated test
sequence shows a block configuration that appears stable.

We first verified that our model is able to predict a given
scene accurately into the future. For this purpose, we plotted
the open-loop predictions given by the fully trained model
with β = 1. Figure 2 shows an examplary result for the over-
lap condition. We see that the predictions of the fully trained
model closely match the expected sequence. Furthermore,
we see that high surprise values for the violated sequence co-
incide with differences to the expected sequence – the model
is surprised when it observes parts of a video sequence that
diverge from real physics. Appendix D.1 shows further
examples for open- and closed-loop predictions, while Ap-
pendix E contains a visualization of prediction errors.

Figure 3 illustrates how knowledge about physical rules
develops over time for the two earlier outlined hypotheses.
On the left, the percentage of sequences for which the sur-
prise for the violated sequence exceeds that of the expected
sequence is plotted for each of the four conditions over the
course of training for the model with β = 1. Here, the model
becomes increasingly optimized over the epochs, thereby
implementing the development as stochastic optimization
hypothesis. It is evident that the model is able to learn three
of the four conditions as it shows more surprise for the vi-
olated than the expected sequences for the majority of the
cases. However, it learns the conditions at roughly the same
rate which does not match the developmental trajectories

of children. While it settles at different levels for the con-
ditions, the order of these conditions also does not match
the acquisition order of children: the shape condition, for
instance, shows the second highest percentage while it is
the last rule that children acquire.

On the right, the percentage of sequences for which the sur-
prise for the violated sequence exceeds that of the matching
expected sequence is plotted for each of the four conditions
for fully trained models with different β-values. This relates
to the development as complexity increase hypothesis since
the representational capacity of the model increases as β
decreases. The order in which increasingly complex mod-
els learn the different conditions again does not resemble
the developmental trajectories of children: the model with
β = 8 performs very similarly to the model with β = 1. To
summarize, for support events, neither hypotheses yields
learning trajectories that resemble the developmental trajec-
tories of children (see also Appendix F for a closed-loop
counterpart to Figure 3).

4.2. Occlusion events

Next, we wanted to test whether the results obtained in the
last section hold across domains. Thus, we extended our
analyses to occlusion events, which display a moving object
passing behind two vertical columns. The two columns,
together with an optional horizontal connection at the top
or bottom, form an occluder which may hide the moving
object. Like in the preceding section, we created a random-
ized training data set alongside several test sequences that
violate physical principles (see Appendix C for examples
and further details about the data generation process).

Baillargeon (1996) reported that, in this setting, (1) infants
form a simple behind/not-behind distinction by 2.5 months.
Hereby they assume that the object will not re-appear in the



The Acquisition of Physical Knowledge in Generative Neural Networks

0 20 40 60 80 100 120 140 160 180
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f s
eq

ue
nc

es
 w

ith
m

or
e 

su
rp

ris
e 

fo
r v

io
la

tio
n Beta = 1.0

No vertical bias Displacement

8 7 6 5 4 3 2 1
Beta

Epoch = 180

Figure 5. The plot on the left shows the percentage of sequences for which the surprise for the violated sequence exceeds that of the
expected sequence for the model with β = 1 at every epoch and for each condition of the collision event data set. The lines are smoothed
with a uniform kernel of size 10. The plot on the right shows the same metric for fully trained models with different β.

gap between the columns that are connected at the top or
bottom. By 3 months, (2) infants expect objects to re-appear
when the columns are connected at the top but fail to do
so if the columns are connected at the bottom. Finally, at
3.5 months, (3) they also expect objects to appear behind
screens that are connected at the bottom, given that the
object is taller than the connecting part.

Figure 4 visualizes our modeling results. First, we can ob-
serve that the fully trained model with β = 1 is surprised
when presented with any of the test sequences that violate
physical principles, indicating that it understood all of the
three aforementioned occlusion settings. For the left side of
the plot, which depicts the development as stochastic opti-
mization hypothesis, we see that the number of sequences
for which the surprise for the violated sequence exceeds that
of the matching expected sequence increases at the same
rate for all three conditions, meaning that the model learns
the three concepts at approximately the same time. Thus,
for occlusion events, the stochastic optimization hypothesis
again does not yield a learning trajectory that matches that
of children.

The right side of Figure 4 relates to the development as
complexity increase hypothesis. Here, we see that the the
percentage of sequences for which the surprise for the vi-
olated sequence exceeds that of the matching expected se-
quence remains relatively stable as the complexity of the
model increases. This again does does not lend support to
the complexity increase hypothesis.

4.3. Collision events

The last physical process that we investigated were collision
events. Here, each scene shows an object rolling down
a hill and colliding with a stationary object. To train our
models, we again created a randomized training data set

of such scenarios together with several test sequences that
violate physical principles (see Appendix C for examples
and further details about the data generation process).

Baillargeon (1996) provides two insights when it comes to
collision events: (1) at first, infants expect any stationary
object that collides with a moving object to be displaced by
the same amount. However, as they grow older, they are
able to take the relative sizes of the two objects into account
and understand that the larger the size of the moving object
compared to the stationary object, the larger the displace-
ment of the stationary object. (2) Furthermore, at around 8
months, infants become subject to a vertical bias, meaning
that they judge stationary objects as immovable if they have
a salient vertical dimension (Wang et al., 2003; 2004).

Figure 5 again shows the learning trajectories of the two
hypotheses. Empirical research suggests that children first
expect a size-independent displacement for all objects. To
test whether our models exhibit such a characteristic, we
compared their predictions for violated sequences with size-
independent displacement (thereby violating physical prin-
ciples) and expected sequences with a size-dependent dis-
placement (working according to normal physics). While
children initially show higher surprise when observing the
expected sequences, our models offer a very different pic-
ture: at no point do they show more surprise for the expected
compared to the violated sequences, as apparent by the plot
on the left side of Figure 5.

To test for the vertical bias, we constructed violated se-
quences where vertical objects do not move upon a collision
and expected sequences where they do move according to
normal physics. When presented with such sequence pairs,
children show more surprise for the expected compared to
the violated sequences at some point during their develop-
ment. However, our models do not exhibit this characteristic
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at any point in time. Throughout training, they are more sur-
prised by the violated compared to the expected sequences.
Likewise, we also do not observe this effect when manipu-
lating the representational capacity of our models as shown
on the right side of Figure 5. For collision events, we there-
fore again find that neither the development as stochastic
optimization nor the development as complexity increase
hypothesis yield learning trajectories that resemble the de-
velopmental trajectories of children.

5. Discussion
We have compared the learning trajectories of an artificial
system to the developmental trajectories of children for
three physical processes. For this purpose, we outlined an
approach that allowed us to investigate two distinct hypothe-
ses of human development: stochastic optimization and
complexity increase.

We found that the learning trajectories under both hypothe-
ses do not follow children’s developmental trajectories. For
all three event types, we found differences to human learn-
ing. For support and occlusion events, the predictions of
our models improve at roughly the same rate for all condi-
tions, which indicates that our models do not move along
separate stages. For collision events, our models crucially
exhibit none of the biases that appear in children. We argue
that this is to be expected. The vertical bias, for example, is
likely a product of their self-directed movement in the world:
as children begin to move around, the majority of vertical
objects they encounter, such as walls or furniture, are im-
movable (Baillargeon, 1996). In contrast to this, our models
do not have access to such experiences and are therefore not
incentivized to show this bias.

While previous work on modeling cognitive development
(Binz & Endres, 2019; Giron et al., 2022) focused on
tasks with low-dimensional and static stimuli, our approach
employs high-dimensional visual stimuli (e.g., video se-
quences) and solely relies on an unsupervised training objec-
tive. It, therefore, more closely mirrors the actual learning
processes of children in the real world. We furthermore ex-
tend previous research on building models with human-like
physical intuitions by not focusing on adult-level perfor-
mance but instead investigating developmental trajectories
(see again Table 1 for a comparison to previous research).

To showcase how our approach functions as a general frame-
work for testing the learning trajectories of artificial systems,
we used a fairly generic generative model. It would be in-
teresting to evaluate the two hypotheses for other model
classes, such as generative adversarial networks (Goodfel-
low et al., 2020) or diffusion models (Sohl-Dickstein et al.,
2015). Furthermore, it has been argued in previous work that
object-centric representations are crucial for a proper phys-

ical understanding of more complex scenes (Piloto et al.,
2022). However, our models did not feature explicit object-
centric representations and were still able to predict a num-
ber of physical processes. Thus, future work should aim
for a systematic comparison of models with and without
explicit object-centric representations.

We used very simple data sets to determine the viability of
our approach. Evidently, children do not learn by looking at
a large number of stylized sequences. Instead, they observe
the real world and generalize their acquired knowledge to
a given experimental setting. To capture this process, fu-
ture research should ideally train models in a similar way.
This could, for example, be accomplished by utilizing the
SAYCam data set, which contains a large number of longitu-
dinal video recordings from infants’ perspectives (Sullivan
et al., 2021). We believe that using this data set, it might be
possible for an artificial model to acquire a vertical bias. It
additionally includes time stamps indicating when a child
has encountered a particular scene, which could be used to
investigate how the nature of the training data influences
development.

Finally, the complexity constraint we impose is a constraint
on the size of the latent representations of the model. How-
ever, it is entirely possible that other parts of children’s
physical models change in complexity throughout their de-
velopment. For example, Binz & Endres (2019) imple-
ment complexity increase through varying the complexity
of model weights instead of the complexity of latent rep-
resentations. In contrast to our work, they found that the
acquisition order of concepts in their model aligned with
that of children for support and occlusion events. Future re-
search should therefore also investigate different complexity
constraints and the resulting learning trajectories.

What do we make of our results on the whole? On the one
hand, they demonstrate that it is possible to use tools de-
veloped in psychology to elucidate the inner workings of
deep learning models (Ritter et al., 2017; Binz & Schulz,
2022). From this perspective, our work highlights yet an-
other mismatch between human learning and learning in
artificial neural networks (Flesch et al., 2018; Dekker et al.,
2022). On the other hand, our results also indicate that
current modeling approaches are quite far away from im-
plementing Turing’s proposal for obtaining a programme
that simulates the adult mind. If we want to keep follow-
ing this direction, we have to therefore ask ourselves what
is needed to build models that acquire their knowledge in
human-like ways. Towards this end, it is possible that the
training data plays an important role, as suggested by some
of our results. However, it might be equally plausible that
we need to develop new model architectures and come up
with more sophisticated ways to train them.
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A. Model implementation and training details
The models were implemented in PyTorch (Paszke et al., 2019). For all models, the size of the stochastic hidden dimension
st was kept at 20, while the size of the deterministic hidden dimension ht was set to 200, as in previous implementations of
the RSSM (Hafner et al., 2019; Saxena et al., 2021).

We used the encoder and decoder from Dittadi et al. (2020). The encoder consists of 3 blocks. The first block consists of
a convolutional layer with a kernel of size 5 and a stride of 2 and a padding of 2, followed by a leaky ReLU activation
function, followed by 2 residual blocks. The second block consists of a convolutional layer with a kernel of size 1 and a
stride of 1 and no padding, followed by average pooling with a kernel of size 2, followed by 2 blocks residual blocks. The
third block consists of average pooling with a kernel of size 2, followed by 2 residual blocks. The fourth block consists of a
convolutional layer with a kernel of size 1 and a stride of 1 and no padding, followed by average pooling with a kernel of
size 2, followed by 2 residual blocks. The fifth block consists of average pooling with a kernel of size 2, followed by 2
residual blocks.

The decoder consists of 5 blocks. The first block consists of 2 residual blocks, followed by upsampling with a scale factor
of 2. The second block consists of 2 residual blocks, followed by a deconvolutional layer with a kernel size of 1 and a
stride of 1, followed by upsampling with a scale factor of 2. The third block again consists of 2 residual blocks, followed by
upsampling with a scale factor of 2. The fourth block consists of 2 residual blocks, followed by a deconvolutional layer with
a kernel size of 1 and a stride of 1, followed by upsampling with a scale factor of 2. The fifth block consists of 2 residual
blocks, followed by upsampling with a scale factor of 2, a leaky ReLU activation funktion, followed by a deconvolutional
layer with a kernel size of 5 and a stride of 1 and a padding of 2.

The models were trained for 180 epochs using a batch size of 32. The loss function was optimized using the Adam optimiser
with a learning rate of 0.001 (Kingma & Ba, 2014), which was divided by 10 every 50 epochs. The models were trained on a
NVIDIA Quadro RTX 5000 for roughly 7 days. Our implementation of the RSSM borrows from a previous implementation
on GitHub. The complete code for this project, including our model implementation, is available upon request.

B. Different measures of surprise
Smith et al. (2019) measure surprise as the maximum of the negative log-likelihood of observations under the model.
Likewise, Piloto et al. (2022) use the sum of the squared error, which given a Gaussian distribution with a standard deviation
of one also equals the negative log-likelihood of observations under the model, up to a constant. We report the same measure
in the main paper. However, Piloto et al. (2018) propose another surprise measure: the KL-divergence between the prior and
posterior over the latent representation (Baldi & Itti, 2010). We confirmed our results using this measure and found only
slight differences between the two measures (see Figures 6 and 7 as an example).

0 20 40 60 80 100 120 140 160 180
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f s
eq

ue
nc

es
 w

ith
m

or
e 

su
rp

ris
e 

fo
r v

io
la

tio
n Beta = 1.0

Contact
Type of contact

Overlap
Shape

8 7 6 5 4 3 2 1
Beta

Epoch = 180

Figure 6. Replication of Figure 3 using the KL-based surprise measure. The plot on the left shows the percentage of sequences for which
the surprise for the violated sequence exceeds that of the expected sequence for the model with β = 1 at every epoch and for each
condition of the support event data set separately. The lines are smoothed with a uniform kernel of size 10. The plot on the right shows the
same metric for fully trained models with different β.

https://github.com/cross32768/PlaNet_PyTorch
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Figure 7. Replication of Figure 2 using the KL-based surprise measure. The first row shows the surprise given by the fully trained
model with β = 1 for the displayed expected and violated sequence. The surprise curves are smoothed using cubic spline interpolation.
The second row shows the expected test sequence. The third row shows the violated test sequence. The last row shows the open-loop
reconstruction from the model. The first four frames were removed for this plot.

C. Training and test data sets
Each of the three event types is split into a training data set and a test data set. The training data set features 100.000 video
sequences which each consist of 20 frames with a size of [64, 64, 3]. It was randomly split into 99.000 training sequences
and 1000 validation sequences. The test data sets feature 80 pairs of expected and violated video sequences for each of the
individual conditions in the respective event types. For the support event types, this results in a test data set with 640 video
sequences. For the occlusion event types, the test data set consists of 480 video sequences. Finally, the test data set for the
collision event types features 320 video sequences. The video sequences again consist of 20 frames with a size of [64, 64, 3].

For the support events, the following variations were performed in order to ensure sufficient variability in the data sets:
lower block size, lower block color, upper block color, lower block rotation, upper block rotation, upper block position
(offset), and camera angle (see Figure 8 for more exemplary test sequences). For the training data set the shape of the upper
block was also varied: half of the trials featured a cube as an upper block, while the other half featured an L-shaped block
with randomly sampled side lengths.

For the occlusion data set, the variations in the data set were: height of the pillars, height of the occluder, color of the
occluder, and color of the moving object (see Figure 9 for more exemplary test sequences). Additionally, in the training data
set, the size of the moving object, the width of the pillars, the position of the occluder, and the speed of the moving object
were varied.

The variations in the collision event data sets were: stationary object size, moving object size, stationary object color, and
moving object color (see Figure 10 for more exemplary test sequences). In the training data set, the camera position and
angle were also varied.
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Figure 8. The last frame for example sequences from the support event test data set. From left to right and top to bottom, the conditions
are contact or no contact, type of contact, overlap, and shape with each a violated sequence left and an expected sequence right.

No occluder Top occluder Bottom occluder

Expected Violated Expected Violated Expected Violated

Figure 9. The middle frame for example sequences from the occlusion event data set. From left to right, the conditions are no occluder,
top occluder, and bottom occluder. Each condition consists of two sequences: the left sequence shows the expected sequence. The right
sequence shows a violation where the moving object only appears on the outside of the occluders.

Vertical bias Displacement

Violated Expected Violated Expected

Figure 10. The last frame for example sequences from the collision event data set. From left to right, the conditions are displacement and
no vertical bias. For each condition, there is a violated sequence left and an expected sequence right.
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D. Model reconstructions
D.1. Support events

Figure 11. The top row shows the last frame from an example batch of the support event test data set. The bottom row shows the
reconstructions by the model with β = 1 and using open loop reconstruction given only the first frame.

Figure 12. The top row shows the last frame from an example batch of the support event test data set. The bottom row shows the
reconstructions by the model with β = 1 and using open loop reconstruction given the first two frames.

Figure 13. The top row shows the last frame from an example batch of the support event test data set. The bottom row shows the
reconstructions by the model with β = 1 and using closed loop reconstruction.
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D.2. Occlusion events

Figure 14. The top row shows the middle frame from an example batch of the occlusion event test data set. The bottom row shows the
reconstructions by the model with β = 1 and using open loop reconstruction given only the first frame.

Figure 15. The top row shows the middle frame from an example batch of the occlusion event test data set. The bottom row shows the
reconstructions by the model with β = 1 and using open loop reconstruction given the first two frames.

Figure 16. The top row shows the middle frame from an example batch of the occlusion event test data set. The bottom row shows the
reconstructions by the model with β = 1 and using closed loop reconstruction.
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D.3. Collision events

Figure 17. The top row shows the last frame from an example batch of the collision event test data set. The bottom row shows the
reconstructions by the model with β = 1 and using open loop reconstruction given only the first frame.

Figure 18. The top row shows the last frame from an example batch of the collision event test data set. The bottom row shows the
reconstructions by the model with β = 1 and using open loop reconstruction given the first two frames.

Figure 19. The top row shows the last frame from an example batch of the collision event test data set. The bottom row shows the
reconstructions by the model with β = 1 and using closed loop reconstruction.
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E. Reconstruction errors
Figures 20, 21, and 22 show the reconstruction error for the respective event type data sets. The reconstruction error is given
by the negative log-likelihood of the reconstructions given example violated sequences. It is displayed as an overlay on top
of the violated sequences.
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Figure 20. Frames from the violated sequences for one batch of the support event data sets with an overlay showing the negative log-
likelihood of the observations under the model with β = 1 and using open loop reconstruction given the first two frames. We see that the
model predominantly focuses on the actual and presumed location of the top cube as well as the shadow of the top cube.
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E.2. Occlusion events
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Figure 21. Frames from the violated sequences for one batch of the occlusion event data sets with an overlay showing the negative
log-likelihood of the observations under the model with β = 1 and using open loop reconstruction given the first two frames. The violated
sequences show a sphere moving behind an occluder and not reappearing in the gap between the columns. We see that the reconstruction
error is large surrounding the edges of the columns. For the bottom occluder sequence, we also see an increased error on the edge of the
connection between the two columns.

E.3. Collision events

No
 v

er
tic

al
 b

ia
s

Frame 1

Di
sp

la
ce

m
en

t

Frame 5 Frame 9 Frame 13 Frame 17 Frame 20

Figure 22. Frames from the violated sequences for one batch of the collision event data sets with an overlay showing the negative
log-likelihood of the observations under the model with β = 1 and using open loop reconstruction given the first two frames. We see that
the reconstruction error is especially large at the actual and presumed locations of the stationary object.
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F. Closed loop results
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Figure 23. This is the closed loop counterpart to Figure 3. The plot on the left shows the percentage of sequences for which the surprise
for the violated sequence exceeds that of the expected sequence for the model with β = 1 at every epoch and for each condition of the
support event data set separately. The lines are smoothed with a uniform kernel of size 10. The plot on the right shows the same metric for
fully trained models with different β.
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Figure 24. This is the closed loop counterpart to Figure 4. The plot on the left shows the percentage of sequences for which the surprise
for the violated sequence exceeds that of the expected sequence for the model with β = 1 at every epoch and for each condition of the
occlusion event data set separately. The lines are smoothed with a uniform kernel of size 10. The plot on the right shows the same metric
for fully trained models with different β.
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Figure 25. This is the closed loop counterpart to Figure 5. The plot on the left shows the percentage of sequences for which the surprise
for the violated sequence exceeds that of the expected sequence for the model with β = 1 at every epoch and for each condition of the
collision event data set separately. The lines are smoothed with a uniform kernel of size 10. The plot on the right shows the same metric
for fully trained models with different β.


