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Abstract

How do people actively learn functional rules, i.e. a mapping of continuous inputs onto a

continuous output? We investigate information search behavior in a multiple-feature

function learning task in which participants either actively select or passively receive

observations. We find that participants benefit from actively selecting information, in

particular in their function extrapolation performance. By introducing and comparing

different models of active function learning, we find that participants are best described by

a non-parametric function learning model that learns about both the underlying function

and inputs that are likely to produce high outputs. These results enrich our understanding

of active function learning in complex domains.

Keywords: active learning; function learning; self-directed learning; search
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Learning functions actively

Introduction

In every day life, we often have to learn functional relationships between different

variables. How far can I drive with my new electric vehicle when the battery is fully

charged? How much breading do I need for the perfect schnitzel? How many rhetorical

questions should I pose to make my introduction compelling?

Traditionally, function learning behavior has been studied in passive

information-processing paradigms. In these paradigms, participants are sequentially

confronted with continuous inputs, for example the height of a bar, followed by a

continuous response, such as the height of another bar. Participants’ task is to learn the

underlying function relating inputs to outputs. Learning success can be tested, for

instance, by asking participants to make predictions about the outcome variable given

previously unobserved input values (i.e., function extrapolation). These experiments have

focused on passive function learning, where the provided inputs are either randomly

determined or selected by the researcher. However, we often actively decide for which

inputs we want to observe the outcome in the real world. For instance, to learn about how

far one can drive an electric vehicle with a full charge, one could measure the maximum

distance covered when driving at different speeds. How can and should an agent actively

learn about functional relations among continuous variables? And what models describe

human active function learning best?

In this paper, we implement a multiple-feature function learning task to investigate

how adult participants actively select inputs for which they want to observe the resulting

output. Our behavioral results show that people’s understanding of the underlying

function is more accurate when learning actively compared to passively observing randomly

selected inputs and corresponding output. The advantage of active over passive learning is

particularly pronounced when participants have to make judgments about new inputs (i.e.

extrapolation judgements). To better characterize participants’ search behavior, we
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evaluate several combinations of function learning models and active sampling strategies.

The best-performing model is a Gaussian Process function learning model combined with

an Upper Confidence Bound sampling strategy. This indicates that participants learn

functions in a flexible way and can adapt to different underlying functional rules instead of

assuming only one particular rule (e.g., a linear function). Moreover, the fact that this

model fits best when combined with an Upper Confidence Bound sampling strategy

suggests that participants care about both learning the function and finding inputs that

produce high outputs.

Function learning

Studies on function learning usually present participants with several input-output

pairs (e.g., two bars of different heights), and then test their learning of the underlying

function by asking them to infer the output for inputs that have not been observed before

(e.g., to predict the height of a second bar, given the first), either included in the range of

the training inputs (interpolation task; e.g., the height of the first bar is very similar to one

previously observed) or outside the range of training inputs (extrapolation task; e.g., the

height of the first bar is different from any previously observed).

Studies using interpolation tasks have shown that linear, increasing functions, are

easier to learn than non-linear, decreasing functions (Brehmer, 1974; Brehmer, Alm, &

Warg, 1985; Byun, 1996; McDaniel & Busemeyer, 2005). Studies using extrapolation tasks

(DeLosh, Busemeyer, & McDaniel, 1997; McDaniel & Busemeyer, 2005) have demonstrated

that participants tend to extrapolate in a linear fashion (Kalish, Lewandowsky, &

Kruschke, 2004; Kwantes & Neal, 2006), even when the underlying function is nonlinear

(DeLosh et al., 1997). However, people are capable of non-linear extrapolation, for example

when the underlying function is cyclical (Bott & Heit, 2004). They therefore have a strong

linear bias when learning functional relationships, but remain flexible learners, able to

adapt to the type of function being learned.
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Different theories have been developed to explain these findings and account for

human function learning. The most prominent are similarity-based and rule-based theories.

Similarity-based theories (e.g., Busemeyer, Byun, Delosh, & McDaniel, 1997; DeLosh et al.,

1997) assume that people associate similar inputs with similar outputs, without learning an

explicit representation of the underlying function. Similarity-based theories successfully

capture some aspects of the observed performance, for instance that some functions are

easier to learn than others. However, they fail to explain participants’ systematic

extrapolation patterns.

Rule-based theories (Carroll, 1963; Koh & Meyer, 1991) assume that participants

learn explicit parametric representations, for example linear or power-law functions.

Rule-based theories of function learning can successfully predict linear function

extrapolation performance, for example by simply assuming that participants learn linear

rules. However, they fail to explain that some rules are more difficult to interpolate than

others (McDaniel & Busemeyer, 2005).

Hybrid models of function learning contain a similarity-based learning process that

acts on explicitly-represented rules. They assume similarity-based interpolation, but

extrapolate using simple linear models (Bott & Heit, 2004; Busemeyer et al., 1997;

McDaniel & Busemeyer, 2005). Some hybrid models are able to capture both extrapolation

and interpolation patterns (McDaniel, Dimperio, Griego, & Busemeyer, 2009). One such

hybrid model has been proposed by Griffiths, Lucas, Williams, and Kalish (2009), who

have put forward a rational theory of function learning based on Gaussian Process

regression. Gaussian Process (GP) regression is a non-parametric method to perform

Bayesian regression. Moreover, GP regression exhibits an inherent mathematical duality

that makes it both a rule-based and a similarity-based model of function learning.

Gaussian Processes generate predictions based on the similarity between different input

values as expressed through a kernel, reminiscent of similarity-based models, and every

kernel can be considered the result of performing a Bayesian regression, echoing rule-based
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models, as each kernel corresponds to a particular prior over functions. Lucas, Griffiths,

Williams, and Kalish (2015) and Schulz, Tenenbaum, Duvenaud, Speekenbrink, and

Gershman (2017) showed that GP regression can account for a wide range of human

interpolation and extrapolation patterns.

Active learning

In the past years, a strong interest in human information search and active learning

has emerged, with several studies finding beneficial effects of active compared to passive

learning (see Coenen, Nelson, & Gureckis, 2018, for a review). For instance, Lagnado and

Sloman (2004) found that learners who were given the opportunity to actively intervene on

a causal system made more accurate inferences than passive learners who could not freely

decide which information to obtain (also see Steyvers, Tenenbaum, Wagenmakers, & Blum,

2003). In category learning, D. B. Markant and Gureckis (2014) found that active learners

sampled more along the line of the category boundaries, thereby selecting more informative

inputs, which in turn increased their categorization performance. Furthermore, recent

studies have demonstrated that active control of the study experience leads to enhanced

recognition memory in both children and adults (D. B. Markant, Ruggeri, Gureckis, & Xu,

2016; Ruggeri, Markant, Gureckis, Bretzke, & Xu, 2019), compared to conditions lacking

this control, and that this benefits persists over time. Whether the opportunity to learn

functions actively results in similar performance enhancements is an open question.

A critical question discussed in research on active learning is how to define the

usefulness of pieces of information (see Nelson, 2005; Settles, 2010, for reviews). Different

formal measures have been put forward, with the most prominent ones including the

reduction in uncertainty measured via Shannon (1948) entropy (Lindley et al., 1956), the

increase in the probability of making a correct classification decision (Nelson, McKenzie,

Cottrell, & Sejnowski, 2010), and obtaining information for improving payoffs (Meder &

Nelson, 2012; Wu, Schulz, Speekenbrink, Nelson, & Meder, 2018). Crupi, Nelson, Meder,
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Cevolani, and Tentori (2018) demonstrated that several of these measures can be unified

into a coherent mathematical framework, thereby connecting formerly competing models of

the value of information.

It is still unclear which measure best accounts for how human learners select

information. For instance, probability gain consistently best described human search

decisions in experienced-based category learning, where the goal is to maximize overall

classification accuracy (Meder & Nelson, 2012; Nelson et al., 2010). In other tasks,

however, information gain (expected reduction in Shannon entropy) is a better predictor

for human search behavior (Bramley, Lagnado, & Speekenbrink, 2015; D. Markant &

Gureckis, 2012; Meder, Nelson, Jones, & Ruggeri, 2019; Nelson, Divjak, Gudmundsdottir,

Martignon, & Meder, 2014). Moreover, search behavior can vary depending on how

information about the structure of the environment is communicated (Nelson et al., 2010;

Wu, Meder, Filimon, & Nelson, 2017). These findings suggest that there might not be one

single measure of usefulness that can account for behavior across all paradigms. Generally,

it is still debated which measure of usefulness best describes active learning behavior in

more complex domains such as function learning, which require combining a model of

learning and a sampling strategy for evaluating and selecting queries (Bramley et al., 2015;

Wu et al., 2018).

The present study: Active function learning

In this paper, we investigate for the first time the impact of active control over the

function learning process on performance. To do that, we propose a novel experimental

and theoretical framework for studying function learning that marries research on human

function learning with recent advances in psychological theories of active learning.

Next, we describe the paradigm we developed to investigate active function learning.

We then report analyses of the behavioral data, complemented by a computational analysis

of participants’ learning and search behavior, in which we compare different models of
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active function learning.

Experiment

Participants

Participants were 720 adults (mean age=36.34, SD = 10, 294 females), recruited

from Amazon Mechanical Turk. Average task duration was 11.83 minutes (SD = 10.71).

Participants received a participation fee of $2.00 and a bonus of up to $1.40 (mean

bonus=$0.97, SD=$0.23). Study approval was obtained from the Max Planck Institute

Ethical Review Board and participants gave informed consent prior to participating.

Materials and Procedure

Participants played a browser-based card game, in which each card showed a different

monster with values for its three features (“friendly,” “cheeky,” and “funny”; see Figure 1).

The instructed goal was to learn to predict the number of “magic fruits” monsters picked

(criterion), based on their feature values (inputs). Participants were told they would

receive a basic participation fee and a performance-dependent bonus.

Methods and design

Participants had to learn the underlying function from sequentially obtaining

information on the criterion value for different monsters’ feature values. The learning phase

card set consisted of 27 cards generated by factorially combining all feature values between

2 and 4, such that participants observed only a restricted range of the function. All 27

cards were initially displayed with the feature values visible and the criterion value hidden

(Figure 1).

Participants were randomly assigned to one of 2× 2× 4 between-subject conditions,

where we manipulated how people learned about the function (learning type, i.e. active or

passive), the function underlying the relationship between the monsters’ feature values and
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Figure 1 . Screenshot of the multiple-feature function learning task (linear condition).
Participants had to learn the relationship between the monsters’ feature values (“friendly,”
“cheeky,” and “funny”) and the criterion (number of fruits picked, shown in the top right
corner of selected cards). In this example, at this point in the game, the criterion value has
been observed for five monster cards, each with a unique feature combination; the criterion
values of the remaining cards are unknown.

the criterion (function type, i.e. linear or quadratic), and the amount of information

participants received during learning (number of observations, between 0 and 27).

Learning type. In the active learning condition, participants could choose for

which cards to observe the criterion value. Participants in the passive learning condition

had to reveal the criterion value of randomly selected cards, one at a time, until the

learning horizon was exhausted. Thus, participants in both conditions received the same

number of data points, but while active learners could freely decide which data to observe,

passive learners received randomly selected data points. Once revealed, the criterion value

remained visible throughout the learning phase (Figure 1).

Function type. To test how a possible advantage of active learning might depend

on the complexity of the underlying function participants were assigned to either a linear

or a quadratic function. The linear function was
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y = f(x) = 6x1 + 3x2 + x3 − 10, (1)

where y is the criterion value and x1, x2 and x3 are the feature values. The weights for

each feature were decaying, to ensure that participants had to attend to all features to

achieve good performance and could not easily use simpler strategies, such as tallying.

The quadratic function was

y = f(x) = −x2
1 + 3x2 + x3 + 21. (2)

We set the weights of the different features such that the range of output values was

similar1 to that experienced by participants in the linear function condition. For all

participants, the features were randomly assigned to x1, x2 or x3.

Number of observations. To test how the amount of learning data impacts

participants’ function learning under passive vs. active learning regimes, we varied the

length of the learning horizon. Participants observed either 0, 1, 5, 22, or 27 input-output

pairs (cards) during the learning phase. The group with 0 observations was added to assess

how participants would perform when they were not given the chance to gain any

information about the underlying function.

Test phase

The test phase consisted of two tasks: a criterion estimation task and a pair

comparison task (order counterbalanced across participants). No feedback was given

during the test phases; the final bonus was determined based on participants’ overall

performance in the test phase (see below).

In the criterion estimation task, participants had to infer the criterion of a given

monster (card) from its feature profile. This task included three types of trials: five recall
1The range of outputs for the learning set was 10-30 for the linear function and 13-33 for the quadratic

function. The outputs for the extrapolation trials were the same values for both conditions and varied
between 0 and 40.
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trials, five interpolation trials, and eight extrapolation trials (18 cards in total; task order

was randomized block-wise across participants). In the recall trials, the cards presented

new monsters but with feature profiles for which participants had already observed the

criterion in the learning phase.2 In the interpolation trials, the cards presented new

monsters with feature profiles corresponding to the five cards that had not been observed

during the learning phase.3 In the extrapolation trials, the cards showed new monsters with

feature values of 1 or 5, representing a part of the function space that participants had not

been trained on during the learning phase.

For each card, participants were asked to provide their criterion estimates by moving

a slider horizontally between 0 and 40 (in increments of 1) until it reached the desired

criterion value. Estimates within 5 of the true criterion value were rewarded with $0.06;

estimates within 10 were rewarded with $0.04; estimates within 20 were rewarded with

$0.02; estimates further than 20 away from the criterion were not rewarded.

In the pair comparison task, participants were shown eight card pairs whose feature

values ranged between 1 and 5, such that these profiles contained both known and

unknown feature values. For each pair, they had to decide which monster had gathered

more fruits. This task assessed how well participants could judge the relative weights of

each feature in the function they had to learn. For three of these trials, the card pairs were

assembled such that one of the three features differed between cards, while the values for

the other two features were held constant. For the other five trials, card pairs were

assembled so that the value of the first, second or last feature outweighed the combined

value of the two other features on each card, so that this feature was the main determinant

of the number of fruits collected. Every correct selection was awarded with $0.04.
2Note that this means there were no recall trials for the group who only observed one card or no cards

at all.
3Note that this means there were no interpolation trials for the group who observed all 27 cards during

the learning phase.
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Figure 2 . Posterior effects of conditions onto participants’ performance. Since performance
was measured by participants’ absolute error, larger estimates indicate worse performance.
(a) Effect on absolute recall error. (b) Effect on absolute interpolation error. (c) Effect on
absolute extrapolation error. (d) Effect on pair comparison tasks. Distributions show
posterior densities of effects when standardized regression estimates were entered into a
Bayesian hierarchical model. Black dots indicate the posterior mean and error bars show
the 95% highest posterior density interval.

Behavioral results

We calculated the effect of each manipulation by performing Bayesian multi-level

regressions of the conditions’ main effects4 onto participants’ absolute errors in the

criterion estimation task (see Appendix for details and additional analyses using maximal

random effects structures). For the learning type condition, we created an indicator

variable that was set to 1 if learning was passive and 0 if it was active. Function type was

coded as 1 if it was quadratic and 0 if it was linear. The number of available observations

was entered as continuous variable into the regression. We z-standardized this variable to

get a standardized estimate of its effect size. All regressions were performed using a

random-intercept over participants and tests are reported based on a comparison with

models not containing the tested variable (see Appendix for details).

Figure 2 shows the effects of the different manipulations onto participants’

performance (their absolute estimation error) for the different tasks included in the test

phase (Figure 2a). In the recall trials of the criterion estimation task, we found no evidence

for either the horizon (β = 0.18, HPD95 = [−0.09, 0.44], BF = 0.9) or the learning type

(β = 0.03, HPD95 = [−0.60, 0.53], BF = 0.5) being beneficial for participants’
4There was no evidence for interaction effects with all BF < 1.



LEARNING FUNCTIONS ACTIVELY 13

performance. However, there was a strong effect of function type, with linear functions

being easier to recall than quadratic functions (β = 1.43, HPD95 = [0.89, 1.96], BF > 100).

In the interpolation trials, participants performed better when given a longer learning

horizon (β = −0.16, HPD95 = [−0.21,−0.11], BF > 100) and when learning a linear

function (β = −0.47, HPD95 = [−0.56,−0.37], BF > 100). We also found moderate

evidence for an advantage of the active learning condition (β = 0.11, HPD95 = [0.01, 0.20],

BF = 3).

In the extrapolation trials, we found that participants were better given a longer

learning horizon (β = −0.13, HPD95 = [−0.16,−0.09], BF > 100) and a linear function

(β = 0.73, HPD95 = [0.67, 0.79], BF > 100). Additionally, we found evidence for an

advantage of the active learning condition (β = 0.09, HPD95 = [0.02, 0.15], BF > 100).

Since there was also a group of participants who did not observe any outputs before

doing the criterion estimation task (labeled as missing value for the condition variable,

since 0 observations are neither active nor passive), we also compared those participants to

searchers who had actively sampled only 1 card. This showed that participants who had

observed only 1 card already performed better than participants who observed no card at

all in the interpolation trials (β = −1.24, HPD95 = [−2.29,−0.20], BF = 4) but not in the

extrapolation trials (β = 0.33, HPD95 = [−1.06, 1.77], BF = 0.08). Thus, we found some

evidence that even small amounts of information can improve participants’ performance.

To assess participants’ performance in the pair comparison task, we calculated the

number of correct choices per participant and regressed the different conditions onto this

number in a Bayesian linear regression without any random effects5. The results revealed

that participants did not benefit from actively learning the function (β = −0.06,

HPD95 = [−0.33, 0.22], BF = 0.4), but performed better in the linear than in the

quadratic condition (β = −1.22, HPD95 = [−1.48,−0.95], BF > 100) and after having
5Note that we obtain the same results if we treat each response individually as in the analyses for

participants’ criterion estimation performance. Additionally, the results did not change when performing
the analysis for the different types of pairs, i.e. pairs where one feature differed and pairs where two features
outweighed another feature.
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observed more cards (β = 0.03, HPD95 = [0.01, 0.04], BF = 79).

Modeling active function learning

Active function learning requires an agent to build up a model of the underlying

function and to sample the most useful inputs according to their beliefs. Thus, the building

blocks for a computational analysis of active function learning are a model of participants’

function learning and of their sampling strategies (e.g., to measure the usefulness of their

selection, akin to information gain or probability gain), used to match the model’s

expectations onto informative actions. We compared two models of function learning, each

combined with three different sampling strategies, to see which combination best accounted

for participants’ behavior.

Models for function learning

Linear Regression. A linear regression assumes that the outputs at time point t

are a linear function of the inputs plus some added noise:

yt = f(xt) + εi = β0 +
k∑
i=1

βixt,i + εt, (3)

where the noise term εt follows a normal distribution εt ∼ N (0, σ2
ε ) with mean 0 and

variance σ2
ε , β0 is the intercept term and βi are the slopes for the different features. Within

a Bayesian framework, we can compute the posterior distribution over the weights and use

this distribution to generate predictions about new observations, given their feature values

(see Appendix for details).

Gaussian Process Regression. A GP regression is a non-parametric Bayesian

way to model regression problems that can theoretically learn any stationary function by

the means of Bayesian inference (Schulz, Speekenbrink, & Krause, 2018). If f is a function

over input space X that maps to real-valued scalar outputs, then this function can be
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modeled as a random draw from a GP:

f ∼ GP(m, k). (4)

Here, m is a mean function that is commonly set to 0 to simplify computations. The kernel

function k specifies the covariance between outputs.

m(x) = E[f(x)] (5)

k(x,x′) = E [(f(x)−m(x))(f(x′)−m(x′))] . (6)

The kernel function k encodes prior assumptions about the underlying function. A

common choice is the radial basis function (RBF) kernel to model the underlying

functional dependencies:

kRBF(x,x′) = exp
(
−||x− x′||2

λ

)
. (7)

The length-scale λ governs the amount of correlation between inputs x and x′.

Importantly, whereas a linear regression makes explicit assumptions about the underlying

functional form (i.e., linear), GP regression makes predictions for new observations based

on their similarity to previously observed features and their outputs via the the kernel.

Active Sampling Strategies

Both function learning models generate predictions about the expected mean and

associated uncertainties of outputs produced by different inputs. However, active function

learning also requires a sampling strategy that maps models’ predictions onto utilities to

guide data selection. We compared three such sampling strategies.

Uncertainty sampling selects at each step the combination of feature values for which

the predicted output is most uncertain, i.e., shows the highest predictive posterior standard
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deviation.

at(x) = arg max σt−1(x) (8)

This strategy reduces the uncertainty over the input space quickly, and is

mathematically related to focusing on the information gain of each observation (Krause,

Singh, & Guestrin, 2008).

Mean sampling selects at each step the input values that currently promise to

produce the highest output:

at(x) = arg max µt−1(x) (9)

This strategy does not attempt to learn efficiently but rather learns about the

function serendipitously by trying to produce high outputs (i.e., here, higher numbers of

magic fruit).

Finally, upper confidence bound sampling (UCB) tries to both reduce uncertainty and

achieve high outcomes by sampling the input that currently shows the highest upper

confidence bound

at(x) = arg max µt−1(x) + βσt−1(x), (10)

where β is a free parameter governing the extent to which participants sample uncertain

options. UCB sampling will, on average, converge to both high knowledge about the

underlying function and sampling the highest possible outcomes. It has been found to

describe human behavior well in exploration-exploitation paradigms where a global value

function governs outcomes (Schulz, Wu, Ruggeri, & Meder, 2019; Wu et al., 2018).
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Model Comparison Results
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Figure 3 . Model comparison results. Average descriptive performance (mean performance
over subjects, R2) for every model and sampling strategy combination. Error bars indicate
the standard error of the mean.

We combined all of the above-described function learning models and sampling

strategies and compared how well they described individual active learners’ card choices in

the learning phase(see Fig. 3). Since assessing model accuracy requires more than one data

point, we only consider learners who observed more than one card (i.e., learning

horizon> 1, N = 194).

We used all models to generate means and uncertainties for trial t+ 1 by feeding

them with participants’ observations up until trial t, repeating this procedure for every

participant over all trials. These means and uncertainties were then converted into utilities

by different sampling strategies. Afterwards, we submitted the resulting utilities into a

softmax function to convert them into choice probabilities
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P (x) = exp(at(x))/τ)∑N
j=1 exp(at(x)/τ)

(11)

where τ is a free temperature parameter estimated for each subject from the data. For each

participant, we calculated a model’s AIC(M) = −2 log(L(M)) + 2k, where L is the models

log-likelihood and k the number of free parameters. Afterwards, we standardized model

performance using a pseudo-R2 measure that compared each model to a random baseline

(i.e., a model that randomly chooses input combinations (cards) to learn about the

function):

R2 = 1− AICi

AICrandom
(12)

Figure 3 shows that the GP function learning model outperformed the linear model

for each sampling strategy. The best overall model was a GP regression model combined

with a UCB sampling strategy (GP-UCB), which showed an average performance of

R2 = .17 and best described 89 participants. The second best model was a Gaussian

Process regression model combined with a mean sampling strategy, which showed an

average performance of R2 = .13 and best described 23 participants. This model performed

significantly worse than the GP-UCB model, t(193) = 9.38, p < .001, d = 0.67, BF > 100.

A Gaussian Process regression model combined with an uncertainty sampling strategy led

to an average performance of R2 = .12, and described 60 participants best. This model also

performed worse than the GP-UCB model, t(193) = 6.41, p < .001, d = 0.46, BF > 100.

The linear regression model combined with an upper confidence bound sampling

strategy (Lin-UCB) achieved an average performance of R2 = 0.08, describing 15

participants best overall. This model also performed worse than the GP-UCB model,

t(193) = 11.04, p < .001, d = 0.79, BF > 100. However, the Lin-UCB model performed
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better than a linear regression model combined with uncertainty sampling, (t(193) = 8.16,

p < .001, d = 0.59, BF > 100, which had a mean performance of R2 = 0.04 and described

3 participants best overall. The Lin-UCB model also performed better than the a linear

regression model combined with a mean greedy sampling strategy, (t(193) = 10.41,

p < .001, d = 0.75, BF > 100, which had a mean performance of R2 = .04 and described 4

participants best overall. Interestingly, the GP-UCB model performed better than the

Lin-UCB model even when the underlying function was linear, (t(85) = 7.97, p < .001,

d = 0.86, BF > 100, indicating that participants applied a Bayesian similarity-based

learning strategy even if the underlying function could have been learned by linear rules.

Finally, we analyzed the parameter estimates of the winning GP-UCB model. The

mean of the softmax temperature parameter was estimated to be τ̂ = 0.25, suggesting that

participants’ sampling behavior corresponded closely to selecting the highest value option,

once they had taken into account both the mean and uncertainty associated with the

inputs, and that they did not simply sampled options randomly. The mean estimate for the

exploration parameter was β̂ = 5.73, showing that participants valued the reduction of

uncertainty positively, trying to learn more about uncertain parts of the underlying

function.

Discussion

We investigated participants’ function learning behavior and performance in a task

where they had to learn about a function relating three continuous features to a continuous

criterion. Our behavioral results showed that participants struggled more when having to

learn a nonlinear as compared to a linear function. This replicates previous results on

human function learning using single features (Brehmer, 1974; Carroll, 1963). Participants’

judgments were also more accurate when they could make more observations during the

learning phase, in particular when making interpolation and extrapolation judgments.

Most importantly, participants benefited from actively learning about the underlying
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function. This effect was particularly pronounced for function extrapolation in the criterion

estimation task. Since extrapolation is known to be a particularly challenging aspect of

function learning and has been termed the “sine qua non” of function learning (DeLosh et

al., 1997), our findings highlight the advantages of actively learning about functional

relations. Participants in the active learning condition did not, however, show increased

performance in the recall and the paired comparison tasks. Because recent results have

shown that active learning leads to improved memory of encountered exemplars (Ruggeri

et al., 2019), our results suggest that the specific learning goal (e.g., learning a function

versus memorizing objects) might mediate the benefits of active learning. Follow-up

experiments could further investigate the conditions under which active control over the

learning experience benefits participants’ recognition memory and functional recall.

By comparing several models of active function learning, we found that a GP

regression combined with an upper confidence bound sampling strategy explained

participants’ behavior best (Lucas et al., 2015; Schulz et al., 2017). This means that

participants learned about the underlying function in a flexible and adaptive way; it also

shows that participants cared about both reducing uncertainty and finding out which

inputs produce high outputs. This finding mirrors previous results obtained in contextual

and spatially-correlated bandit tasks (Schulz, Konstantinidis, & Speekenbrink, 2016; Wu et

al., 2018). In particular, recent studies showed that participants solve the

exploration-exploitation dilemma in reinforcement learning problems in a similar fashion

(Schulz, Wu, et al., 2019; Wu et al., 2018). This hints at the possibility of a universal

sampling strategy underlying both information search and the search for rewards.

Participants may not easily be able to turn off the exploitation part of their sampling

strategy as they normally encounter a mix of exploration and exploitation problems in real

life (Schulz, Bhui, et al., 2019).

Our results enrich our understanding of active learning in complex domains and pave

the way for future studies on active, self-directed function learning. Active function
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learning is particularly crucial to effectively navigate the world by making accurate

inferences and predictions, as many real-world phenomena depend on functional

relationships. Mastering this ability can boost learning more generally, especially from a

developmental perspective. We know from previous studies that children and adults can

differ in their ability to generalize from past observations and their tendency to seek out

uncertainty (Schulz, Wu, et al., 2019). An important question for future research is

therefore to identify and precisely characterize the emergence and developmental

trajectories of active function learning.
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Appendix A

Statistical tests

We report all statistical tests using both frequentist and Bayesian formats. We present

frequentist tests alongside their effect sizes, i.e. Cohen’s d (Cohen’s d; Cohen, 1988).

Bayesian statistics are expressed by their Bayes factors (BFs). A Bayes factor quantifies

the likelihood of the data under the alternative hypothesis HA compared to the likelihood

of the data under the null hypothesis H0. For example, a BF of 5 indicates that the data

are 5 times more likely under HA than under H0; a BF of 0.2 indicates that the data are 5

times more likely under H0 than under HA. We apply the “default” Bayesian t-test as

proposed by Rouder and Morey (2012) when comparing two independent groups, using a

Jeffreys-Zellner-Siow prior with its scale set to
√

2/2. We approximate the Bayes factor

between two different mixed-effects regressions by applying bridge sampling (Gronau et al.,

2017). For the Bayesian regression models, we postulate that the β-coefficients for each

participant βi are drawn from a normal distribution

βi ∼ N (µβ, σ2
β), (13)

estimating the group-level mean µβ and variance over participants σ2
β. We use the following

priors on the group-level parameters:

µβ ∼ N (0, 100) (14)

σβ ∼ Half-Cauchy(0, 100). (15)

Posterior inference is accomplished by using Hamiltonian Monte Carlo and brms package

(Bürkner, 2017).
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Appendix B

Detailed model implementation

We provide further mathematical details for the two models of active function learning.

Bayesian linear regression

The first function learning model is linear regression. We adopt a Bayesian

perspective on linear regression, performing posterior inference over the weights. We

assume a Gaussian prior over the weights p(w) = N (0,Σ) and a Gaussian likelihood

p(yt|Xt,w) = N (X>t w, σ2
ε I). The resulting posterior is

p(w|yt,Xt) ∝ p(yt|Xt,w)p(w)

= N
(

1
σ2
ε

A−1
t Xtyt,A−1

t

)
(16)

where At = Σ−1 + σ−2
ε XtX>t . This posterior can be used to generate predictions about

different option’s means and uncertainties, which can then be fed into different sampling

strategies.

Gaussian Process regression

Gaussian process regression assumes that the output y of a function f at input x can

be written as

y = f(x) + ε (17)

with ε ∼ N (0, σ2
ε ). In Gaussian process regression, the function f(x) is distributed as a

Gaussian process:

f(x) ∼ GP (m(x), k(x,x′)) . (18)
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A Gaussian process GP is a distribution over functions and is defined by a mean and a

kernel function. The mean function m(x) reflects the expected function value at input x:

The kernel function k specifies the covariance between outputs.

m(x) = E[f(x)] (19)

k(x,x′) = E [(f(x)−m(x))(f(x′)−m(x′))] . (20)

Conditional on observed data D = {xn, yn}Nn=1, where yn ∼ N (f(xn), σ2) is a

noise-corrupted draw from the latent function, the posterior predictive distribution for a

new input x∗ is Gaussian with mean and variance given by:

E[f(x∗)|D] = k>∗ (K + σ2I)−1y (21)

V[f(x∗)|D] = k(x∗,x∗)− k>? (K + σ2I)−1k∗, (22)

where y = [y1, . . . , yN ]>, K is the N ×N matrix of covariances evaluated at each pair of

observed inputs, and k∗ = [k(x1,x∗), . . . , k(xN ,x∗)] is the covariance between each

observed input and the new input x∗. This posterior distribution can also be used to derive

predictions about each option’s mean and uncertainties, which can be fed into different

sampling strategies.

These predictions depend crucially on the chosen kernel function. The kernel function

k(x,x′) models the dependence between the function values at different input points x and

x′:

k(x,x′) = E [(f(x)−m(x))(f(x′)−m(x′))] (23)

We use a radial basis function kernel, which is defined as

k(x,x′) = σ2
f exp

(
−‖x− x′‖2

2λ2

)
. (24)
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The radial basis function provides an expressive kernel to model smooth and stationary

functions. The two hyper-parameters λ (called the length-scale) and σ2
f (the signal

variance) can be varied to increase or reduce the a priori correlation between points and

consequentially the variability of the resulting function. We chose those parameters by

maximizing the log marginal likelihood. For a GP with hyper-parameters θ, this likelihood

is given by:

log p(y|X, θ) := −1
2y
>(K + σ2

nI)−1y − 1
2 log |K + σ2

nI| −
n

2 log 2π. (25)

where the dependence of K on θ is left implicit. We optimize the hyper-parameters using

gradient-based optimization as implemented in the GPML toolbox (Rasmussen & Nickisch,

2010).

Model comparison

We use both models of learning, the Bayesian linear regression and Gaussian Process

regression, to model participants’ active learning. We fit the models to a the data a

participant has seen time point t and then make predictions about each options mean and

choices at t+ 1. We then feed these means and uncertainties into the different sampling

strategies. The resulting utilities are then parsed into a softmax choice rule. We optimize

the β of the UCB sampling strategy as well as the temperature parameter τ for each

participant using the log-likelihood L. Participant-wise optimization is performed by using

differential evolution as implemented in DEOptim (Mullen, Ardia, Gil, Windover, & Cline,

2009). The resulting log-likelihood can be used to calculate Akaike’s Information Criterion

(AIC, Akaike, 1998)

AIC(M) = −2 log(L(M)) + 2k, (26)
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where k indicates the number of optimized parameters (two for any model using UCB

sampling, and one otherwise). We standardize the resulting AIC using a pseudo-R2

measure which compares each model’s AIC to a random baseline (without parameters):

R2 = 1− AICi

AICrandom
. (27)
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Appendix C

Behavioral results without extreme numbers of observations

Because our data set also contained participants with either 0 or 30 number of

observations, we also analyzed our main behavioral effects after excluding these

participants. We therefore combined participants’ recall, interpolation, and extrapolation

performance into one data set of participants’ criterion estimation performance. All of the

variables were coded as in our main analyses. Additionally, we removed participants with

either 0 or 30 observations. We then again estimated a linear Bayesian multi-level model,

regressing the number of observations, the function type, and the learning type onto

participants’ absolute error during the test trials. The results of this analysis showed

strong effects for all three of our main manipulations. In particular, participants performed

better given a longer learning horizon (β = −0.08, HPD95 = [−0.10,−0.06], BF > 100)

and a linear function (β = 4.05, HPD95 = [3.58, 4.51], BF > 100). Importantly, there was

also a strong effect of learning condition, with participants in the active learning condition

performing better than participants in the passive condition (β = 0.65,

HPD95 = [0.12, 1.12], BF > 100).

Next, we also analyzed the behavioral results using maximal linear mixed-effects

models (Barr, Levy, Scheepers, & Tily, 2013). Although the overall model comparison

suggested that only including a random intercept over participants was enough, it is

nonetheless sometimes recommended to keep the comparison maximally. Thus, we

repeated the analysis from above, this time entering all of the individual factors as random

effects into the null model and comparing them to an alternative model that additionally

included the tested factor as a fixed effect as well. This analysis also revealed that all three

manipulations had a significant effect onto participants’ criterion estimation performance.

Specifically, participants performed better given more observations (β = −0.08,

HPD95 = [−0.10,−0.05], BF > 100), a underlying linear function (β = 4.09,

HPD95 = [3.59, 4.55], BF > 100) as well as in the active learning condition (β = 0.61,
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HPD95 = [0.16, 1.08], BF > 100).


