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Abstract
Ecological rationality refers to the notion that hu-
mans are rational agents adapted to their envi-
ronment. However, testing this theory remains
challenging due to two reasons: the difficulty
in defining what tasks are ecologically valid and
building rational models for these tasks. In this
work, we demonstrate that large language mod-
els can generate cognitive tasks, specifically cat-
egory learning tasks, that match the statistics of
real-world tasks, thereby addressing the first chal-
lenge. We tackle the second challenge by deriving
rational agents adapted to these tasks using the
framework of meta-learning, leading to a class of
models called ecologically rational meta-learned
inference (ERMI). ERMI quantitatively explains
human data better than seven other cognitive mod-
els in two different experiments. It additionally
matches human behavior on a qualitative level:
(1) it finds the same tasks difficult that humans
find difficult, (2) it becomes more reliant on an
exemplar-based strategy for assigning categories
with learning, and (3) it generalizes to unseen
stimuli in a human-like way. Furthermore, we
show that ERMI’s ecologically valid priors allow
it to achieve state-of-the-art performance on the
OpenML-CC18 classification benchmark.

1. Introduction
Ecological rationality refers to the idea that humans are ra-
tional agents adapted to the ecological environments they
interact with. Nearly seventy years ago, Brunswik (1955)
emphasized that we have to move beyond laboratory settings
and understand cognition in the light of naturalistic environ-
ments. Later on, Simon (1990) famously argued that human
decision-making is like the two blades of a scissor, with one
blade representing the cognitive processes of the mind and
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the other the structure of the environment in which the mind
operates. Todd & Gigerenzer (2012) furthered this notion
by introducing the term ecological rationality, suggesting
that minds are adapted to their environments through the
use of simple, context-specific strategies.

However, it has remained challenging to build computa-
tional models that describe how people implement strategies
adapted to their environment for two reasons. First, defining
ecologically valid tasks is still an open problem (Barker,
1968; Neisser, 1987; Hammond, 1998) and second, even
if we have access to such tasks, it is challenging to build
models that solve them rationally.

In the present paper, we address both of these challenges.
We show that large language models (LLMs) – having been
trained on large amounts of human-generated text – can
serve as a useful tool for generating ecologically valid tasks,
thereby addressing the first challenge. To address the second
challenge, we then derive rational learning algorithms for
these tasks using the framework of meta-learning (Pratt
& Thrun, 1998; Hochreiter et al., 2001; Binz et al., 2023),
leading to a class of models that we call ecologically rational
meta-learned inference (ERMI).

We illustrate our approach using the domain of category
learning (Ashby & Maddox, 2005) — one of the best-
studied areas of cognitive science. We begin by verifying
that LLMs can generate category learning tasks whose statis-
tics match real-world classification data sets (Bischl et al.,
2019). Following this, we show that ERMI quantitatively
explains human data from two different category learning
experiments better than seven other cognitive models. Fur-
thermore, ERMI aligns with human behavior qualitatively:
(1) it finds the same tasks difficult that humans find difficult,
(2) it shows the same transition of categorization strategies
as humans, and (3) it generalizes to unseen stimuli in a
human-like way. Taken together, these results suggest that
we can explain human category learning to a large extent
using the principle of ecological rationality.

Furthermore, we hypothesized that the ecologically valid
priors encoded in ERMI allow it to perform well on classi-
fication tasks from the machine learning literature. To test
this hypothesis, we evaluate ERMI on the curated classifi-
cation benchmark OpenML-CC18 (Bischl et al., 2019) and
find that it achieves state-of-the-art performance.
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2. Related work
LLMs for data generation: Recently, the wider concept
of using LLM-generated data to train another model has
become more popular (Gunasekar et al., 2023; Schick &
Schütze, 2021; Wang et al., 2023; Bai et al., 2022; Mitra
et al., 2023; Taori et al., 2023). For example, Gunasekar et al.
(2023) prompted GPT-3.5 to generate synthetic textbook-
quality data which they used to train a smaller transformer-
based model. To justify this approach in the context of
ecological rationality, one has to first establish that LLMs
can produce ecologically valid tasks. Borisov et al. (2022)
have done so recently by showing that LLMs are realistic
tabular data generators, while Griffiths et al. (2023) demon-
strated that LLM-generated data matches the priors of hu-
man subjects in several settings. (Coda-Forno et al., 2023)
have shown that LLMs can even adapt their priors by meta-
learning fully in-context.

Meta-learned models of cognition: Using models that
achieve optimal task performance to study behavior is cen-
tral to the rational analysis of cognition (Anderson, 1991b).
Traditionally, these models have taken the form of Bayesian
models (Griffiths et al., 2008). However, the Bayesian
framework does not permit the construction of rational mod-
els for a given data set of tasks. The framework of meta-
learning offers a way to overcome this problem (Binz et al.,
2023). Unlike Bayesian models, meta-learned models of
cognition can learn adaptive priors by repeatedly interact-
ing with a distribution of tasks. Furthermore, these models
have been shown to converge onto the optimal learning algo-
rithm for the environments they are trained on (Ortega et al.,
2019) and can be used in cases where the hand-crafting of
assumptions is impractical or even infeasible.

Recently, it has been shown that meta-learned models cap-
ture human behavior across a wide range of domains, in-
cluding decision-making (Binz et al., 2022a), reinforcement
learning (Kumar et al., 2022; Binz & Schulz, 2022b; Jensen
et al., 2023; Schubert et al., 2023), and compositional reason-
ing (Jagadish et al., 2023; Lake & Baroni, 2023). However,
all these previous applications have relied on environments
hand-engineered by researchers instead of ecologically valid
ones.

Human category learning: How people learn to categorize
objects has received significant attention in the cognitive
sciences. For example, researchers have investigated how
people learn to make fine-grained perceptual categoriza-
tions (Ashby & Townsend, 1986), what strategies people use
when learning to categorize objects by comparing formal
models of category learning (Smith & Minda, 1998; Nosof-
sky & Zaki, 2002; Maddox & Ashby, 1993), or whether
there are different cognitive systems of category learning
(Ashby & Maddox, 2005; Newell et al., 2011). In the present
work, we make use of this rich literature by relying on its

experimental paradigms and data. In particular, we used
the paradigms developed by Shepard et al. (1961), Smith
& Minda (1998), and Johansen & Palmeri (2002). We fur-
thermore compare our model to a wide range of previously
established category learning models (Nosofsky, 1986; An-
derson, 1991a; Homa & Cultice, 1984; Nosofsky et al.,
1994b).

3. Methods
In this section, we describe how we prompted LLMs to gen-
erate ecologically valid category learning tasks and how we
then used meta-learning to learn models that are optimally
adapted to these tasks.

3.1. Prompting LLMs to generate ecologically valid
category learning tasks

A category learning task entails categorizing a stimulus
x ∈ Rn into categories y based on its feature values. Mul-
tiple stimuli are presented sequentially and participants
are tasked to predict their category after each presentation.
Upon making their choice, they receive feedback on the true
category of the stimulus and are presented with the next one.

To generate thousands of such category learning tasks from
an LLM, we relied on a two-stage process. In the first
stage, we queried the LLM to synthesize feature names
and corresponding category labels. In the second stage, the
model was prompted to produce data points for the feature
names and category labels generated in the first stage.

More specifically, we used the following prompt to synthe-
size feature names and category labels:

Synthesize feature names and category labels

I am a psychologist who wants to run a category
learning experiment. In a category learning experiment,
there are many different three-dimensional stimuli,
each of which belongs to one of two possible real-world
categories.

Please generate names for three stimulus feature di-
mensions and two corresponding categories for 250
different category learning experiments:

The LLM then produced a series of category learning tasks
in a sequence until the specified number of tasks was gener-
ated. To illustrate one example, based on this prompt, the
model constructed a category learning task with [SODIUM,
FAT, PROTEIN] content as feature names and [HEALTHY,
UNHEALTHY] as category labels.

In the second stage, we prompted the LLM to generate data
points for a given category learning task:
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Generate category learning tasks

I am a psychologist who wants to run a category learn-
ing experiment. For a category learning experiment, I
need a list of stimuli and their category labels. Each
stimulus is characterized by three distinct features:
sodium, fat, and protein. These features can take
only numerical values. The category label can take the
values healthy or unhealthy and should be predictable
from the feature values of the stimulus.

Please generate a list of 100 stimuli with their feature
values and their corresponding category labels using
the following template for each row:

– feature value 1, feature value 2, feature value 3,
category label

Each generated data point contains feature values and
their corresponding category label, e.g., [250, 15, 20,
HEALTHY] for our previously mentioned example. In total,
we generated three data sets containing around 10 000 dif-
ferent category learning tasks for three, four, and six feature
dimensions. Each task consisted of 100, 300, and 616 data
points, respectively. We provide further details about the
generated category learning tasks (including the counts of
the top 50 feature names and category labels) in Appendix
A.

For our data generation procedure, we used CLAUDE-V2
(Anthropic, 2023) as it can process up to 100 000 tokens,
is instruction-tuned, and performed well out of the box in
our preliminary experiments. The temperature parameter
was set to one to induce diversity and all other parameters
were set to their default values. We provide details about
other LLMs we considered and additional design choices in
Appendix A.2.

3.2. Ecologically rational meta-learned inference
(ERMI)

We parsed the generated tasks as described in Appendix A.3
and stored them in a numerical format. Then, we constructed
rational learning algorithms for the numerical data by train-
ing memory-based meta-learning systems based on a two-
stage process (Hochreiter et al., 2001; Santoro et al., 2016;
Wang et al., 2016). In an inner-loop stage, a neural network
predicts the category yt for an input stimulus xt conditioned
on preceding stimulus-category pairs x1:t−1, y1:t−1. In an
outer-loop stage, the network’s parameters θ are updated
using the following objective:

argmax
θ

Ep(x1:T ,y1:T )

[
T∑

t=1

log pθ (yt | x1:t, y1:t−1)

]
(1)

where pθ defines the output probabilities produced by the
network.

During evaluation – i.e., once training is completed – the
neural network implements a free-standing learning algo-
rithm that can predict the category label of a new stimulus
based on preceding stimulus-category pairs, despite its pa-
rameters being frozen. The resulting network approximates
the Bayes-optimal learning algorithm for the data set of the
category learning tasks p(x1:T , y1:T ) encountered during
training (Ortega et al., 2019).

We refer to the class of models derived by training on eco-
logically valid (i.e., LLM-generated) category learning task
as ecologically rational meta-learned inference (ERMI). If
trained on synthetically-generated category learning tasks
sampled from a Bayesian logistic regression prior, we refer
to the models as meta-learned inference (MI; Binz et al.,
2022a). Finally, using the terminology of Müller et al.
(2022), we refer to the models as prior-data fitted networks
(PFN) when tasks are sampled from a Bayesian neural net-
work prior. For details on how these tasks are generated, see
Appendix B.1.

The backbone for all our meta-learning models consisted
of a transformer-based decoder architecture (Vaswani et al.,
2017) with a causal attention mask. The network had six
layers, a model dimension of 64, 256 hidden units in the
feed-forward network, and eight attention heads. Positional
encoding of input data points was done using sine and cosine
functions of different frequencies (Vaswani et al., 2017).
Note that during evaluation, transformer weights are frozen
and learning is purely driven by self-attention applied to
causally masked inputs.

In each training episode, a batch of tasks is sampled
from p(x1:T , y1:T ) and the model predicts the category for
the given stimulus conditioned on all preceding stimulus-
category pairs. Finally, the objective mentioned in Equation
1 is computed, and model parameters are updated using the
ADAM optimizer (Kingma & Ba, 2014) with a learning rate
of 10−4. This process is repeated for 500 000 episodes. We
provide full details about the model training procedure in
Appendix B.2.

4. LLM-generated category learning tasks are
ecologically valid

ERMI can only be interpreted as an ecologically rational
model if the statistics of LLM-generated tasks on which it
was trained match the statistics of real-world classification
problems. We verified that this was the case by comparing
the data distributional properties of the two (Chan et al.,
2022). For this analysis, we relied on the OpenML-CC18
benchmarking suite, a curated collection of real-world clas-
sification tasks (Bischl et al., 2019). Note that although
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(a) Real-world classification tasks (OpenML-CC18 benchmark)

(c) Synthetically-generated category learning tasks

(b) LLM-generated category learning tasks

Figure 1. LLM generates ecologically valid category learning tasks: Mean task performance of the logistic regression model measured
over trials (first column). Histogram of Pearson’s correlation coefficients computed between pairs of features (second column). Histogram
of Gini coefficients computed over the logistic regression weights (third column). Linearity of the category learning task (fourth column)
computed for (a) 28 different real-world binary classification tasks from the OpenML-CC18 benchmarking suite (b) ecologically valid
category learning tasks generated from CLAUDE-V2 and (c) synthetic category learning tasks derived using the Bayesian logistic regression
prior.

the OpenML-CC18 benchmark is large enough to enable
this form of statistical analysis, it is too small for direct
meta-learning.

We downsampled all tasks in the OpenML-CC18 benchmark
to four feature dimensions and included only binary classifi-
cation tasks without any missing features in our analysis –
amounting to 28 tasks. In addition, we also contrasted LLM-
generated tasks to a collection of synthetically-generated
category learning tasks with a linear decision boundary (cor-
responding to those used to train MI). We analyzed these
collections of tasks in terms of their learning curves, input
correlations, sparsity, and linearity – details for which can
be found in Appendix C.

Learning curves: Real data is noisy and not perfectly
predictable. To investigate whether this is also true for
our LLM-generated category learning tasks, we plotted the
learning curves of a logistic regression model as a func-
tion of the number of training points. We found that the
model reaches a ceiling accuracy of around 75% for both
LLM-generated and real-world classification tasks (Figure

1; first column). In contrast, the ceiling performance for
synthetically-generated tasks was much higher, reaching
almost 100%.

Input correlations: Information contained in different fea-
ture dimensions are often correlated with each other. In
the context of human cognition, it has been argued that this
data distributional property of real-world data supports the
reliance of people on heuristic decision-making strategies
(Gigerenzer & Gaissmaier, 2011). While input dimensions
in the synthetically-generated data were not correlated at all,
both LLM-generated (0.11 ± 0.02; t(1639) = 4.55, p <
0.001) and real-world tasks (0.21 ± 0.01; t(2252) =
14.64, p < 0.001) showed a significant percentage of corre-
lated features (Figure 1; second column). The corresponding
histograms had similar shapes, both containing a peak at
perfectly correlated features.

Sparsity: Another data distributional property that al-
lows people to ignore information is sparsity — for many
tasks only a few dimensions are relevant. We fitted a
linear model on each task to evaluate whether we could
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(a) (b) (c) (d)

Figure 2. ERMI shows human-like learning difficulties: (a-c) Average error probabilities for each task TYPE in each block of 16 trials
for (a) humans, (b) ERMI, and (c) MI. (d) The posterior model frequency of participants’ choices in the Badham et al. (2017) study for
eight computational models. Human data in (a) was reproduced from Table 1 in Nosofsky et al. (1994a). ERMI and MI were simulated on
TYPE 1-6 tasks for 50 runs with the inverse temperature that resulted in the lowest mean-squared error compared to humans, which was
β = 0.4 for ERMI, and β = 0.9 for MI.

find evidence for this in the LLM-generated data. We
used the Gini coefficient – a measure borrowed from the
economics literature – of the resulting regression coef-
ficients to quantify sparsity (Binz et al., 2022a). High
Gini coefficients correspond to maximal sparsity, mean-
ing only a single feature is relevant. Both LLM-generated
(0.38 ± 0.01; t(545) = 3.81, p < 0.001) and real-world
tasks (0.45± 0.01; t(762) = 10.83, p < 0.001) exhibited
significantly higher sparsity than synthetically-generated
tasks (0.32± 0.01, see Figure 1; third column).

Linearity: People have strong priors towards linear rela-
tionships but can also learn non-linear ones given enough
examples (Lucas et al., 2015; Brehmer, 1974). To measure
whether this bias is also present in the distributional proper-
ties of the data, we conducted a model comparison between
a linear model (a simple logistic regression model) and a
non-linear one (logistic regression with higher-order poly-
nomial features). For each task, we computed the posterior
probability that the linear model offers a better explanation
as our measure of linearity (details can be found in Appendix
C). Most LLM-generated and real-world tasks were found
to be linear but there was also a significant number of excep-
tions (Figure 1; fourth column). The synthetically-generated
tasks, on the other hand, were fully linear by design.

Taken together, these analyses indicate that category learn-
ing tasks generated by LLMs share many features with real-
world classification tasks. As they can also be produced in
large quantities, these tasks can serve as a substitute for real-
world classification tasks when meta-learning ecologically
rational learning algorithms.

5. ERMI shows human-like learning
difficulties

In the following sections, we investigate how well ERMI
captures human category learning. We began by looking

at one of the most canonical studies in category learning
originally conducted by Shepard et al. (1961). The study
required participants to learn how to categorize a stimulus
that varied in shape (triangle or square), size (small or big),
and color (black or white). In total, there were eight stimuli,
and participants had to categorize them into one of two
categories over several blocks of 16 trials. The authors
assigned a stimulus to a category based on six different
rules (labeled TYPE 1 to TYPE 6) that increased in difficulty.
For more information, we refer to Appendix G.

Shepard et al. (1961) showed that people find tasks belong-
ing to TYPE 1 the easiest and TYPE 6 the hardest, with
the average error for TYPE 1 tasks going to zero after four
blocks and TYPE 6 tasks remaining at around 10.6% even
after 15 blocks (see Figure 2). The average error for TYPE
2 tasks (3.2%) was found to be lower than for TYPE 3 tasks
(6.1%), TYPE 4 tasks (6.5%), and TYPE 5 tasks (7.5%).

We simulated ERMI and MI on the Shepard et al. (1961)
study. Figure 2 (a) to (c) shows their learning curves along-
side those of humans for the six difficulty levels. It can
be seen that the learning curves of ERMI are difficulty-
dependent and are in terms of mean-squared error (MSE)
more similar to humans (MSE = 0.03) than MI (MSE =
0.26). Notably, ERMI, like humans, finds the TYPE 1 task
easier than the TYPE 6 task and shows a similar clustering
of learning curves for TYPE 2 to TYPE 5 tasks. However,
we also find that ERMI learns much faster than people: its
performance plateaus after four blocks while humans con-
tinue learning until the end of the experiment for most types.
Even though MI performs tasks of different difficulty levels
to varying degrees of success, its learning curves do not
match those of humans. For example, unlike humans, MI
finds TYPE 2 tasks as difficult as TYPE 6 tasks and TYPE 4
tasks easier than TYPE 3 tasks.

Furthermore, we investigated how well ERMI explains hu-
man trial-by-trial choices on a quantitative level. For this,
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(b)(a) (c) (d)

Figure 3. ERMI becomes more exemplar-based with learning: (a-c) The average error of exemplar- and prototype-based models fitted
to (a) human choices, (b) simulated choices from ERMI, and (c) simulated choices from MI for each block of 56 trials. (d) The posterior
model frequency of participants’ choices in the Devraj et al. (2021) study for seven computational models. Human data in (a) was
reproduced from Smith & Minda (1998). ERMI and MI were simulated using inverse temperature values fitted to participants’ choices in
Devraj et al. (2021). The mean of the fitted inverse temperature and its standard error were 0.09± 0.01 for ERMI and 0.17± 0.02 for
MI, respectively. The shaded region shows the standard error of the mean.

we considered human data from Badham et al. (2017) who
conducted a replication of Shepard’s original study that only
included TYPE 1 to TYPE 4 tasks. We performed a Bayesian
model comparison between eight computational models:
the three meta-learned models introduced earlier (ERMI,
MI, and PFN), and five other cognitive models. The five
established category learning models from the cognitive
science literature included the rational model of catego-
rization (RMC; Anderson, 1991a), the generalized context
model (GCM; Nosofsky, 1986), a prototype model (PM;
Homa & Cultice, 1984), a rule-based model (Rule; Ashby &
Townsend, 1986), and a rule-plus-exception model (Rulex;
Nosofsky et al., 1994b). We provide more details about the
five cognitive models, their fitting procedure, and the model
comparison in Appendix D, E, and F.

We measured the goodness-of-fit to human choices based
on two metrics: posterior model frequency and exceedance
probability (Rigoux et al., 2014). The posterior model fre-
quency measures how often a model offers the best expla-
nation in the population, while the exceedance probability
measures how likely it is that a given model is the most
frequent explanation (the latter is reported in the Appendix
G). Figure 2 (d) shows that ERMI explains human choices
the best more frequently (0.43 ± 0.05) compared to the
other models, with the RMC coming in a close second
(0.41± 0.05). MI (0.10± 0.03) and PFN (0.05± 0.02) fit
human data the best less than 10% of the time. The clas-
sical cognitive models like the exemplar-, prototype- and
rule-based models failed at explaining human choices better
than other competing models (≤ 1% of times).

6. ERMI becomes more exemplar-based with
learning

What strategy people use to categorize objects and how
the application of strategies changes over time are heavily
debated questions in psychology. Smith & Minda (1998)
attempted to understand whether people use prototype- or
exemplar-based strategies during category learning. More
specifically, they asked: do people learn a prototype for
each category and assign categories based on the similarity
of a stimulus to the learned prototypes, or do they instead
remember previously seen examples for each category and
assign categories based on the similarity of a stimulus to the
stored exemplars?

To investigate this, Smith & Minda (1998) designed a cate-
gory learning task that contained 14 six-dimensional stimuli,
each of which was assigned to a category based on a non-
linear decision rule. Participants in their experiment were
then tasked to assign one of the two categories to repeatedly
presented stimuli. Following this, they fit predictions from
prototype- and exemplar-based models to proportions of
human choices, aggregated over trials within a block, by
minimizing the MSE between them. They found that people
were better explained by the prototype-based model in the
early blocks but in the later blocks, their choices aligned
more closely with the exemplar-based model as shown in
Figure 3 (a). We provide more details about this analysis in
Appendix H.

We simulated choices from ERMI and MI on the task
of Smith & Minda (1998) and fitted the prototype- and
exemplar-based models on the simulated choices as in the
original study. We find that ERMI, like humans, becomes
increasingly exemplar-based over trial segments (β̂ =
−0.01 ± 0.004; z = −2.54, p < 0.01) whereas choices
from MI are explained almost equally well by exemplar-
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(a) (b) (c) (d)

 T1: [1 0 1 1] 
T2: [1 0 1 0]
T3: [0 1 1 1]
T4: [1 1 0 1]
T5: [1 1 0 0]
T6: [0 1 1 0]
T7: [0 0 0 0]

Figure 4. ERMI displays human-like generalization: (a-c) Average categorization probabilities of transfer stimuli T1-T7 for (a) humans
(b) ERMI (c) MI. (d) The encoding scheme used for the seven transfer stimuli. Human data in (a) was reproduced from Johansen &
Palmeri (2002). ERMI and MI were simulated on the same experiment for 77 runs, with inverse temperature settings that resulted in the
lowest mean-squared error compared to humans, which was β = 0.9 for ERMI, and β = 0.1 for MI.

based and prototype-based learning (β̂ = −0.002 ±
0.005; z = −0.47, p = 0.63) as shown in Figure 3 (b) and
(c). While humans are better explained by prototype-based
models for the first five blocks, ERMI is already better ex-
plained by an exemplar-based model from the second block
onwards. Like in the previous study, this again indicates
that ERMI is learning the task faster than humans. Nonethe-
less, these results demonstrate that training on ecological
category learning problems is sufficient for developing an
exemplar-based strategy category assignment. We provide
additional details and results in Appendix H.

We then evaluated if ERMI also explains human choices
better than competing models in this study. To do this,
we conducted a model comparison on human data from
Devraj et al. (2021) – a replication of the Smith & Minda
(1998) study – following the procedure outlined in Section
5. Posterior model frequency in Figure 3 (d) suggests that
ERMI explains human choices the best most often (0.32±
0.06), closely followed by the GCM (0.24± 0.05) and the
rule-based model (0.20± 0.05).

7. ERMI displays human-like generalization
Having shown that ERMI learns category structures in a
human-like way, we next inspect how it generalizes to stim-
uli unseen during training and whether it displays generaliza-
tion patterns similar to people. To this end, we zoomed into
the study from Johansen & Palmeri (2002), in which partici-
pants were instructed to categorize nine four-dimensional
stimuli into two categories. The authors then examined
how participants generalized to seven transfer stimuli (la-
beled T1-T7) for which they did not receive feedback during
training. In Figure 4 (a), we report the mean probability
of participants assigning category A to each of the seven

transfer stimuli at the end of the experiment. It can be seen
that they assigned stimuli T5, T6, and T7 mostly to category
A and T1, T2, T3, and T4 mostly to category B. We provide
further details about the paradigm in Appendix I.

We simulate the behavior of ERMI and MI on the Johansen
& Palmeri (2002) study and found that ERMI generalizes to
unseen stimuli in a human-like way by classifying stimuli
T1, T3, and T4 more often as category B and T5, T6, and T7
more often as category A. MI, on the other hand, classified
all stimuli except T7 mostly as category B. The Euclidean
distance between the choice probabilities of humans and
MI (0.67) was higher than that between humans and ERMI
(0.29). The pattern of generalization of ERMI matches
humans except for stimulus T2, which is classified at around
chance level. Why exactly this is the case remains a question
for future work. One possible explanation could relate to
the observation that T2 only contains two non-zero features
(see Figure 4 (d)) while all other stimuli categorized as B
contain three non-zero features.

8. ERMI achieves state-of-the-art performance
on machine learning benchmarks

Humans can bring to bear the rich set of priors they have
acquired from their everyday interactions to generalize
to novel tasks (Tenenbaum & Griffiths, 2001; Griffiths &
Tenenbaum, 2006; Lake & Baroni, 2023). Thus far, we
have demonstrated how ERMI captures some of these adap-
tive priors and explains essential aspects of human category
learning. This led us to ask whether such a model can also
perform well on real-world classification tasks from the
machine learning literature.

To investigate this, we evaluated the performance of ERMI
on a set of real-world classification tasks from the OpenML-

7



Ecologically rational meta-learned inference explains human category learning

Table 1. Performance metrics on OpenML-CC18 benchmark.

MEAN SVM XGBOOST TABPFN ERMI

ACC. 69.29% 70.17% 70.51% 70.95%

RANK 2.76 2.61 2.85 2.26

CC18 benchmarking suite (Bischl et al., 2019). We excluded
classification tasks with more than two classes, over 100 fea-
tures, or missing values, resulting in a set of 23 classification
tasks. We then compared the performance of ERMI against
several baseline models, including logistic regression, a
support vector machine (SVM; Cortes & Vapnik, 1995),
XGBoost (Chen & Guestrin, 2016), and TabPFN (Hollmann
et al., 2023). TabPFN is an off-the-shelf PFN-based model
designed for tabular data prediction that has recently shown
state-of-the-art performance on an independent large-scale
evaluation (McElfresh et al., 2023).

Following the procedure of Müller et al. (2021), we created
20 class-balanced learning problems with 100 data points
for each of the selected data sets. We provided 30 input-label
pairs to our models for training and evaluated them on the
remaining 70 data points. For each data set, we reduced the
input dimensionality to four, keeping only the features with
the highest F-value to the target variable. We measured the
performance on the test set based on two metrics: accuracy
and rank.

We found that ERMI is the best model in terms of both mean
accuracy (70.95%± 0.54) and mean rank (2.26± 0.22; see
Table 4). TabPFN is the second-best model in terms of mean
accuracy (70.51% ± 0.63), while XGBoost is the second-
best in terms of mean rank (2.61 ± 0.30). We provide the
summary of main results in Table 1 and detailed results
across all data sets in Appendix J.

The performance gain of ERMI over TabPFN in terms of
mean accuracy is in the same range as TabPFN over XG-
Boost, indicating that the improvement is substantial. In
terms of parameters, TabPFN has 64 times more parameters
than ERMI, and on disk, it is around 80 times larger, suggest-
ing that there is room for further improvement. When com-
pared to a parameter-matched PFN and MI, ERMI shows a
significant accuracy boost of 3.5% and 10% respectively.

9. Discussion
Ecological rationality has a long history in cognitive science
(Brunswik, 1955; Simon, 1990; Todd & Gigerenzer, 2012).
However, it has been notoriously difficult to build models
that are optimally adapted to the problems that people en-
counter in their everyday environment. From a technical
perspective, the framework of meta-learning offers a solu-
tion to this problem. Yet, it has thus far only been applied

to artificially-generated environments (Kumar et al., 2020;
Binz & Schulz, 2022b; Binz et al., 2022a; Lake & Baroni,
2023; Jagadish et al., 2023). The main obstacle up to now
was that the number of available real-world data sets was
insufficient for meta-learning. We have shown that one can
overcome this obstacle by prompting LLMs to generate a
large collection of ecologically valid category learning tasks.
We have then used meta-learning to obtain models that are
optimally adapted to them, leading to a class of ecologically
rational models that we call ERMI.

ERMI captured three patterns, which are also observed when
humans learn to categorize objects: (1) it showed similar
learning difficulties as humans, (2) it became more exemplar-
based as learning progressed, and (3) it displayed human-
like generalization patterns. Furthermore, it explained hu-
man behavior better than competing approaches on a quan-
titative level, thereby suggesting that we can explain many
characteristics of human category learning using the princi-
ple of ecological rationality.

The methodology developed, more importantly, enables
us to test whether people are ecologically rational or not,
thereby allowing us to ask questions such as: how much
of human learning can be attributed to data distributional
properties alone? The approach we have proposed is quite
general and in future work, we plan to extend it to other
domains, such as decision-making (Bourgin et al., 2019; Pe-
terson et al., 2021), reinforcement learning (Brändle et al.,
2021), and function learning (Schulz et al., 2017; 2016).
Furthermore, it would be interesting to not impose a prede-
fined task structure on the LLM but instead let it synthesize
arbitrary task structures by itself.

However, at the same time, there were also facets of hu-
man category learning not captured by ERMI. In particular,
we found that ERMI generally learned faster than people.
In the third experiment, for instance, ERMI already dis-
played the generalization patterns shown in Figure 4 after
two blocks, while people required 16 blocks or more (Jo-
hansen & Palmeri, 2002). We believe that this gap can (at
least partially) be closed by incorporating limited computa-
tional resources (Binz et al., 2022a; Jagadish et al., 2023) or
other architectural constraints (Achterberg et al., 2023).

To conclude, we have shown that LLMs can generate eco-
logically valid category learning tasks that can be used for
meta-learning. With these models at hand, we then demon-
strated that one can explain human category learning to
a large extent using the principle of ecological rationality.
Furthermore, the priors acquired by ERMI are rich enough
that it achieves state-of-the-art performance on a real-world
classification benchmark. In future work, we plan to scale
up ERMI’s architecture, train it on classification tasks with a
flexible number of features, increase the maximum number
of data points, and allow for more than two classes.
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A. Generating ecologically valid category learning tasks using LLMs
A.1. Synthesizing task features and labels

We synthesized task features and labels from CLAUDE-V2 using the prompt mentioned in Section 3.1, running it for a total
of 100 batches. In each batch, we generate 250 tasks or until a maximum token length of 10k is reached. We repeat the
procedure for all three different stimuli dimensions. In total, we synthesized 23421, 20690, and 13693 category learning
tasks with three, four, and six-dimensional features respectively.

We show the counts for the top-50 most frequently occurring task features in Figure 5 and categories in Figure 6 for the
23421, 20690, and 13693 category learning tasks generated with three (a), four (b), and six-dimensional features respectively.
We found that the model tends to produce features belonging to topics such as musicality (for instance, rhythm, melody,
lyrics, tempo, vocals) and food (for instance, aroma, texture, crust, diet, protein). Regarding categories, there were many
related to music (for example, classical, pop, jazz, rock) and vehicles (like trucks, SUVs, sedans). In future work, we plan to
do a semantic analysis of the generated task features and category labels using methods such as hierarchical clustering to
study the semantic grouping of the generated task features/categories.

(b)(a) (c)

Figure 5. Frequency of different features in CLAUDE-V2 synthesized category learning tasks: Counts for the top-50 most frequently
occurring task features in the 23421, 20690, and 13693 category learning tasks generated for three (a), four (b), and six-dimensional
features respectively.

(b)(a) (c)

Figure 6. Frequency of different categories in CLAUDE-V2 synthesized category learning tasks: Counts for the top-50 most frequently
occurring category labels in the 23421, 20690, and 13693 category learning tasks generated for three (a), four (b), and six-dimensional
features respectively.

A.2. Generating category learning tasks

We used the prompt mentioned in Section 3.1 to generate data points for task features and labels synthesized in the first
stage. We aimed to generate 100, 300, and 616 data points for category learning tasks with stimuli of three, four, and six
dimensions respectively. However, sometimes the upper bound of 100k tokens is reached and the model does not generate
the number of data points specified in the prompt. This was especially the case in category learning tasks with higher
dimensional stimuli. In these cases, we generate the data points in two steps. In step one, we do the data generation as
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before using the original prompt. In step two, we query the model again but now conditioned it on the first 20-40 percent
of the data points generated in step 1 along with the prompt. This way, we could scale up the generated data points to up
around 1.5 times the original length keeping the same underlying data distribution. We generated a total of 11518, 8950, and
12911 category learning tasks with three, four, and six-dimensional stimuli respectively.

Note on other LLMs: We ran preliminary tests on LLMs other than CLAUDE-V2 for generating category learning tasks
including LLaMA (Touvron et al., 2023) and GPT-4 (Achiam et al., 2023). The non-instruction-tuned LLaMA version
was not able to consistently produce the 100-616 data points we need per task. It was also especially difficult to parse the
output of the model as the generated output failed to stick to the provided format. This problem could be mitigated with
instruction-tuned versions of LLaMA that are now available but we leave it for future work. We also performed preliminary
tests on the GPT-4 model from OpenAI for category learning task generation but found the model sampled the values for the
features from uniform distribution using the code module and applied simple heuristic rules most of the time. For example,
the sum of two features should be greater than the third and the mean of the two features greater than the other. Upon
conducting a preliminary statistical analysis on a relatively small data set generated from GPT-4, we found that task statistics
are similar to the statistics of the MI data set, thereby lacking the diversity in terms of measures reported in Section 4.

A.3. Parsing data generated by LLMs

Parsing synthesized task features and labels: We queried the CLAUDE-V2 to synthesize task features and labels in the
following format: FEATURE DIMENSION 1, FEATURE DIMENSION 2, ..., FEATURE DIMENSION N, CATEGORY LABEL 1,
CATEGORY LABEL 2. We then used a regular expression (regex) pattern, specifically \d+\.(.+?)\n, to efficiently parse
and extract relevant data from the model output. This regex was designed to identify and isolate sequences beginning with a
number followed by a period, capturing subsequent characters up to the first newline character. The extracted text was then
processed to acquire the names for feature dimensions and category labels by splitting the string at the commas. The final
processed data is then stored as a dataframe for future use.

Parsing generated task data points: We queried the CLAUDE-V2 to generate data points for a given category learning
task in the following format: - FEATURE VALUE 1, FEATURE VALUE 2,..., FEATURE VALUE N, CATEGORY LABEL. The
model followed the aforementioned format while generating the data points for a category learning task, more often than
not. We then used a collection of regular expression (regex) patterns to parse the generated, ensuring accurate handling of
different data formats. These regex patterns were designed to cover a wide range of scenarios: capturing numeric values
with or without decimal points, handling alphanumeric strings including those with hyphens, and handling complex cases
involving commas, hyphens, and optional preceding labels. Furthermore, they extend to different delimiters and formats,
from simple comma-separated values to more complex structures with optional components. In Table 2, we show all the
regex expressions used to parse data points. Based on these expressions, we were able to successfully parse up to 95 % of
the tasks generated by the model. The values extracted from these regex expressions are then stored in a dataframe which
acts as an offline repository of tasks on which one can train the ecologically rational meta-learned inference model.

B. Meta-learned inference models
B.1. Synthetic data generation

Bayesian logistic regression prior used for training MI model: We generated 10k synthetic binary classification tasks
with a linear decision boundary using a Bayesian logistic regression model. To do this, we sample the input features from a
normal distribution with zero mean and unit variance for a given number of data points and stimulus dimensions. We then
applied a linear transformation, followed by a sigmoid function, and rounded the result to determine the binary class for the
given input. The parameters of the linear transformation are sampled from a normal distribution with zero mean and unit
variance. The maximum number of data points within a task was set to 400, 650, or 300 for category learning tasks with
three, four, and six-dimensional stimuli respectively. These values were chosen depending on the length of the experiments
on which these models were evaluated.

Bayesian neural network prior used for training PFN model: We generated 10k synthetic binary classification tasks
using a version of the Bayesian neural network (BNN) prior developed by Müller et al. (2021). We used normally-distributed
i.i.d. input features for a given number of data points and stimulus dimensions. We then pass the input through a BNN with
two layers with tanh non-linearity and hidden dimensionality of 64. The network weights and biases were sampled from a
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Table 2. Regular expression patterns used for parsing the data points generated for category learning tasks by CLAUDE-V2

INDEX REGULAR EXPRESSION

1 ([\d.]+),([\d.]+),([\d.]+),([\w]+)
2 ([\w\-]+),([\w\-]+),([\w\-]+),([\w]+)
3 ([-\w\d,.]+),([-\w\d,.]+),([-\w\d,.]+),([-\w\d,.]+)
4 ([ˆ,]+),([ˆ,]+),([ˆ,]+),([ˆ,]+)
5 ([ˆ,\n]+),([ˆ,\n]+),([ˆ,\n]+),([ˆ,\n]+)
6 (?:.*?:)?([ˆ,-]+),([ˆ,-]+),([ˆ,-]+),([ˆ,-]+)
7 ([ˆ,-]+),([ˆ,-]+),([ˆ,-]+),([ˆ,-]+)
8 r’ˆ(\d+):([\d.]+),([\d.]+),([\d.]+),([\d.]+),([\w]+)’
9 r’ˆ(\d+):([\w\-]+),([\w\-]+),([\w\-]+),([\w\-]+),([\w]+)’
10 r’ˆ(\d+):([-\w\d,.]+),([-\w\d,.]+),([-\w\d,.]+),([-\w\d,.]+),([-\w\d,.]+)’
11 r’ˆ(\d+):([ˆ,]+),([ˆ,]+),([ˆ,]+),([ˆ,]+),([ˆ,]+)’
12 r’ˆ(\d+):([ˆ,\n]+),([ˆ,\n]+),([ˆ,\n]+),([ˆ,\n]+),([ˆ,\n]+)’
13 r’ˆ(\d+):(?:.*?:)?([ˆ,-]+),([ˆ,-]+),([ˆ,-]+),([ˆ,-]+),([ˆ,-]+)’
14 r’ˆ(\d+):([ˆ,-]+),([ˆ,-]+),([ˆ,-]+),([ˆ,-]+),([ˆ,-]+)’
15 ˆ(\d+):([\d.]+),([\d.]+),([\d.]+),([\d.]+),([\d.]+),([\d.]+),([\w]+)
16 ˆ(\d+):([\w-]+),([\w-]+),([\w-]+),([\w-]+),([\w-]+),([\w-]+),([\w]+)
17 (\d+):([ˆ,]+),([ˆ,]+),([ˆ,]+),([ˆ,]+),([ˆ,]+),([ˆ,]+),([ˆ,]+)
18 (\d+):([ˆ,\n]+),([ˆ,\n]+),([ˆ,\n]+),([ˆ,\n]+),([ˆ,\n]+),([ˆ,\n]+),([ˆ,\n]+)
19 (\d+):(?:.*?:)?([ˆ,-]+),([ˆ,-]+),([ˆ,-]+),([ˆ,-]+),([ˆ,-]+),([ˆ,-]+),([ˆ,-]+)
20 (\d+):([ˆ,-]+),([ˆ,-]+),([ˆ,-]+),([ˆ,-]+),([ˆ,-]+),([ˆ,-]+),([ˆ,-]+)

normal distribution with a mean of zero and standard deviation of 0.1 and subjected to an additional sparsity constraint
(i.e., 20 percent of randomly chosen network weights and biases set to zero). The maximum number of data points was
once again set to 400, 650, or 300 for category learning tasks with three, four, and six-dimensional stimuli respectively. The
model output is passed through a sigmoid function to generate probability estimates which are then rounded to determine
the class for the given input.

B.2. Data pre-processing, model architecture, and training

Data pre-processing: We filter out all tasks with more than two unique category labels and then binarize the category
labels which are originally strings to make them consistent across tasks. We also normalized each feature independently
using a min-max normalization scheme such that values taken by any feature lie always between zero and one. Both the
task features and data points were shuffled while generating tasks. Note that the tasks generated by LLMs are typically of
different lengths. Whenever the sampled tasks are of variable lengths, they are padded with zeros to match the length of the
longest task sample within the batch. We additionally also sampled LLM-generated data points with replacement to match
the length of the experimental task used in the Devraj et al. (2021) and Johansen & Palmeri (2002) studies. We resorted
to this strategy as the LLM-generated tasks had a maximum of about 200 data points per task and by resampling, we can
evaluate the model on experiments with larger horizons without any drop in performance. The batch size was set to 64 for
three- and four-dimensional stimuli and to 32 for six-dimensional stimuli and it operated under a maximum steps regime of
400, 300, and 650 for three, four, and six-dimensional tasks respectively.

Model architecture and training: The task features were mapped onto a 64-dimensional embedding space and positional
encoded using sine and cosine functions of different frequencies as in Vaswani et al. (2017). A casual attention mask was
then generated for the inputs such that the model makes conditional predictions on all preceding data points. The inputs
along the attention mask are then passed to the transformer decoder model which had six layers, a model dimension of 64,
256 hidden units in the feed-forward network, and eight attention heads. The output of the transformer was then passed
through a linear readout and sigmoid function to generate probability estimates for category 1. In practice, inference for all
time steps is performed in parallel by passing a causal attention mask to the TRANSFORMERDECODER module in PyTorch
(Paszke et al., 2019). We used binary cross-entropy (BCE) loss for a given batch of inputs and updated the model parameters
using the ADAM optimizer (Kingma & Ba, 2014) with a learning rate of 10−4. We trained all our models for a total of
500 000 episodes.
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C. LLMs generate ecologically valid category learning tasks
Sparsity: We fitted a logistic regression model for each task and analyzed the sparsity of the resulting regression weights
w ∈ Rd using the Gini coefficient G:

G(w) =

d∑
i=1

d∑
j=1

|wi −wj |

2d

d∑
i=1

wi

(2)

Linearity: We fitted a logistic regression model and a logistic regression with second-order polynomial features on data D
from each task. We then computed the Bayesian information criterion (BIC) for both models and used them to approximate
the posterior probability that the linear model offers a better explanation of the data (assuming a uniform prior over models):

p(M = linear|D) ≈ exp(−0.5 · BIClinear)∑
m∈{linear, polynomial} exp(−0.5 · BICm)

(3)

D. Cognitive models
In this section, we will provide details regarding the five cognitive models we used for model comparison.

Rational model of categorization (RMC): The RMC is a Bayesian model of human category learning (Anderson,
1991a). In this paper, we used a meta-learned version of the model, which was obtained using the following data-generating
distribution described in Badham et al. (2017). Model architecture and training followed the protocol used for ERMI, MI,
and PFN. We set the free parameters based on an earlier study (Nosofsky et al., 1994a) to the following values: c = 0.318,
sP = 0.488, and sL = 0.046. Note that we did not account for these parameters in our model comparisons, which slightly
overestimates the ability of the RMC to explain human behavior.

Prototype-based model (PM): There are several versions of the prototype model (Medin & Schaffer, 1978; Smith &
Minda, 1998). Here, we use the version from Smith & Minda (1998). The prototype model assigns a category to an observed
stimulus based on the similarity to the category prototypes. The raw distance between the stimulus and a prototype, qk, for
category k is computed as a weighted sum of absolute differences across n feature dimensions with weights, wj ∈ [0, 1], for
the features contained to sum to 1 as shown in Equation 4.

dx,qk =

n∑
j=1

wj |xj − qk,j | , (4)

Note that prototypes themselves can either be learned or provided during model definition. Here, we learn the prototypes
for the two categories {q1, q2}. Therefore, qk,j ∈ [0, 1.] ∀j = {1, 2, ...n} are themselves also parameters. Distance is then
converted to psychological similarity between prototypes and stimuli using:

ηx,qk = e−c·dx,qk (5)

where c is a sensitivity parameter that can shrink or amplify discriminability in psychological space. The probability of the
stimulus being assigned to category 1 is then computed using:

P (k = 1 | x) = ηx,q1
ηx,q1 + ηx,q2

(6)

Furthermore, the final model predicted likelihood is a mixture between the predicted probability from the model and a
random guess, with guessing parameter ϵ controlling the mixture probabilities:

p(k = 1 | x) = (1− ϵ)P (k = 1 | x) + ϵ ·K−1 (7)

where K indicates number of categories.
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Generalized context model (GCM): We used the GCM developed by Nosofsky (1986). The GCM categorizes an
observed stimulus to a category by comparing the sum of its similarity to all previously seen exemplars in each category,
{C1, C2}. The raw distance and similarity between observed stimulus and exemplars were computed based on Equations
4 and 5 respectively. The probability of assigning a stimulus to category k = 1 is then computed based on the summed
category similarities in the following way:

P (k = 1 | x) =
∑

y∈C1
ηx,y∑

y∈C1
ηx,y +

∑
y∈C2

ηx,y
(8)

The final model predicted category probabilities is again a mixture between the predicted probability from the model and a
random guess as mentioned in Equation 7.

Rule (Rule): The rule model implemented in this work assigns a category based on one of the two rules, whichever
explains the participant data better. The first rule is based on the values taken by stimulus features along one dimension, and
the second is based on the application of the conjunctive rule on pairs of features – whether a given pair of stimulus features
take on the same value. The final model predicted category probabilities is again a mixture between the category prediction
from the model and a random guess as mentioned in Equation 7.

Rule plus exception model (Rulex): We use the same implementation as the Rule model but provide exceptions as inputs
to the model. For Devraj et al. (2021) task, we provide [1, 1, 1, 1, 0, 1] as the exception stimulus for category 1, and for
category 2, it was set to [0, 0, 0, 1, 0, 0]. For Badham et al. (2017) task, we provide [1, 1, 1] and [0, 0, 0] as exceptions for
TYPE-2 task. The final model predicted category probabilities is again a mixture between the category prediction from the
model and a random guess as mentioned in Equation 7. In future work, we plan to implement a more detailed version of
rule-plus-exception model from (Nosofsky et al., 1994b) where the model learns the exceptions along with the rule.

E. Fitting models to human data
In this section, we explain the fitting procedure used to fit the parameters of the models to human data. The model parameters
were fit to the data using maximum likelihood estimation. We explain the implementation details for the different model
classes below. The full list of fitted parameters for each model is shown in Table 3.

MI, PFN, RMC and ERMI: We fit an inverse temperature term β within the sigmoid function, which squashes the output
from the final layer of the transformer to be within [0, 1], to each participant. Note that this term is set to one during the
meta-learning phase to derive an optimal model and is fitted only during the evaluation phase with the rest of the model
weights being frozen. We use the differential evolution optimizer available in the SciPy optimization library (Virtanen et al.,
2020) for fitting.

GCM and PM: Both models predict the probability of picking a category in a trial-by-trial fashion conditioned on all
preceding stimulus-target pairs. We fit their parameters to human choices that minimize the negative log-likelihood of
human choices under the model prediction. To do so, we used the MINIMIZE module available in SciPy’s optimization
library. As mentioned in Section D, the weights for the features were bounded to be within [0, 1] and sum to 1, the sensitivity
term bounded to be within [0, 20]. The prototype model requires learning the prototypical stimulus for each category (same
dimensionality as the input stimulus, with the feature values bounded to be within [0, 1]). Both models learning a guessing
parameter ϵ, which was bounded to be within [0, 1].

Rule and Rulex: We used the same procedure as above except that we learn the stimulus dimension vi on which the rule
is applied.

F. Bayesian model comparison
In this section, we provide details regarding the Bayesian model comparison procedure used to compare the fits of different
models to the behavioral data. We first performed maximum likelihood estimation to fit model parameters θm. We then
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Table 3. Fitted parameters in each model where β is the inverse temperature term, wi indicates the weights for the stimulus feature
dimension i, n is the number of stimulus feature dimensions, c is the sensitivity term, ϵ is noise term in an epsilon greedy policy, q1 and
q2 are the values for the prototypes for d stimulus features, and vi are the stimulus dimension on which the rule is applied.

MODEL PARAMETERS

ERMI, MI, PFN, RMC β
GCM c, ϵ, wi ∀ i ∈ {1, 2, . . . , n}
PM c, ϵ, wi, q1,i, q2,i ∀ i ∈ {1, 2, . . . , n}
RULE v1, v2, ϵ
RULEX v1, v2, ϵ

computed the Bayesian information criterion (BIC) for model m for a given participant as follows:

BICm = −2 ·max
θm

T∑
t=1

log pθm (ŷt | x1:t, y1:t−1) + |θm| log(T ) (9)

where |θm| is the number of parameters estimated for model m, T is the number of trials in the task and ŷt is the category
choice made by the participant in trial t. BIC penalizes the model based on its complexity and can be used as a measure for
comparing goodness-of-fit when models differ in terms of their number of parameters.

We reported two metrics in the paper: posterior model frequency (in the main text) and exceedance probability. To compute
them, we used a Python implementation of the Variational Bayesian Analysis (VBA) toolbox (Daunizeau et al., 2014). The
toolbox requires us to provide log-evidences for each model and participant, which we approximate using −0.5 · BICm. For
further details about this model comparison procedure, see Rigoux et al. (2014).

G. ERMI shows human-like difficulty effects
G.1. Experiment details for Shepard et al. (1961) and Nosofsky et al. (1994a)

In their replication of the Shepard et al. (1961) study, Nosofsky et al. (1994a) conducted the study on 120 participants.
The authors used geometric stimuli that varied in shape (squares or triangles), interior line type (solid or dotted), and size
(large or small). Every participant completed two problems, therefore, each problem was performed by 40 participants.
The participants were informed that the rules for each problem were independent. Following the methodology of Shepard
et al. (1961), the learning process involved classifying stimuli into two categories and receiving feedback. This process was
repeated over several blocks (containing up to 16 trials) with randomized stimulus order in each block. Learning in the
task was measured until participants achieved a no-error streak in four consecutive sub-blocks of eight trials or reached a
maximum of 400 trials. For more details, please refer to Nosofsky et al. (1994a).

In tasks belonging to TYPE 1, stimuli were assigned to a category depending on the values they take along one of the
three dimensions, whereas in TYPE 2 tasks, stimuli were assigned to a category by applying the exclusive-or rule along
two relevant dimensions. Category assignment in tasks belonging to TYPE 3, TYPE 4, and TYPE 5 used a unidimensional
rule-plus-exception structure with some stimuli grouped in the central region and some in the periphery. Lastly, TYPE 6
tasks require considering feature values along all dimensions. For the illustration of category structures for the six types,
please refer to Figure 1 in (Nosofsky et al., 1994a).

In Badham et al. (2017), the authors replicated the Shepard et al. (1961) study on 96 adults aged between 18 to 87 years.
They used eight geometric shapes varying in size (large or small), shape (square or triangle), and color (black or white) in
the experiment with the stimuli shown on a mid-gray background. The order of stimuli and their category assignment were
randomized. They only considered the first four types from the Shepard et al. (1961) study but unlike their study, participants
performed all four types. Participants performed each task type for a total of six blocks with each block containing 16 trials
(resulting in a total of 96 trials) or until they reached a criterion of perfect performance in two consecutive blocks. For more
details, please refer to Badham et al. (2017).
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G.2. Simulations:

To run simulations of the Shepard et al. (1961) study on ERMI, MI, and PFN model, the geometric stimuli used in the
experiment as mentioned above are converted into binary coded vectors taking values along the three stimulus feature
dimensions. The value assignment for a stimulus feature was randomized in every run, the order of presentation of the
stimulus was also randomized, and the number of presentations of a stimulus per block was matched to the original study. In
each run, the model was evaluated on a task of one particular type.

(a) (b) (c) (d)

Figure 7. Supplementary figure accompanying Figure 2: (a-c) Average error probabilities for each task TYPE in each block of 16 trials
for (a) humans, (b) RMC, and (c) PFN. (d) The exceedance probability of participants’ choices in the Badham et al. (2017) study for eight
computational models. Human data in (a) was reproduced from Table 1 in Nosofsky et al. (1994a). RMC and PFN were simulated on
TYPE 1-6 tasks for 50 runs with the inverse temperature that resulted in the lowest mean-squared error compared to humans, which was
β = 0.9 for ERMI, and β = 0.9 for MI.

G.3. Additional observations and results

Why are TYPE 2 and TYPE 6 hard? We think that this could be because TYPE 2 tasks involve applying the exclusive-or
rule along two relevant dimensions (and ignoring one of the dimensions altogether), while TYPE 6 tasks require memorizing
feature values taken by stimuli along all dimensions, making it hard for models to learn.

Learning curves of RMC and PFN are not as similar to humans as ERMI: MSE between learning curves of humans
and RMC and PFN was 0.10 and 0.17 respectively. They are larger than that of ERMI which was 0.03.

ERMI learns the task faster than people: We transform the block variable t using an exponential kernel as follows:

y = ae−b∗t + c (10)

where a is the amplitude, b is the decay coefficient term, and c is the offset term, and then regressed the transformed variable
onto the error rate for both ERMI and humans. We found that the fitted decay coefficient for ERMI (1.24) is larger than for
humans (0.44).

Baseline models fit the data adequately: Baseline models particularly the GCM (177.35±4.70) and PM (201.19±3.38)
model did fit the data quite well in terms of log-likelihoods compared to ERMI (200.82± 4.56). However, the number of
parameters being fit to human data is quite large in these models (refer to Table 3). Therefore, they are heavily penalized
and have higher BIC values than ERMI.

H. ERMI becomes more exemplar-based
H.1. Experiment details for Smith & Minda (1998) and Devraj et al. (2021)

Smith & Minda (1998) conducted their study on 32 participants, using 14 six-dimensional stimuli, with each stimulus
mapping to a six-letter nonsensical word such as gafuzi, kafitdo, nivety, wysero, etc. — see Appendix A of Smith &
Minda (1998) for all words. Each stimulus can be represented by a six-digit binary string, where each digit and position
corresponds to a specific letter. For example, if the stimulus ’gafuzi’ corresponds to the binary code ’000000’, then ’gyfuzi’
corresponds to ’010000’, and so on. The stimuli were assigned to categories such that stimulus ’000000’ corresponds to
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category 1 and stimulus ’11111’ corresponds to category 2. We only considered the non-linearly separable (NLS) category
structure from Experiment 2 in this work. According to this, a category contained five stimuli with five features in common
with the prototype, and one stimulus with five features in common with the opposing prototype. Therefore, category 1
contained seven stimuli as follows: [000000, 100000, 010000, 001000, 000010, 000001, 111101]. The remaining seven
stimuli belonged to category 2 [111111, 011111, 101111, 110111, 111011, 111110, 000100]. Participants had unlimited
time to make their choice on each trial. After making their choice, they were told whether it was a correct decision or not.
Participants completed a total of 560 trials, or 10 blocks (called trial segments by the authors but we call them blocks to be
consistent with other experiments) of 56 trials each, in which they saw each stimulus four times.

Devraj et al. (2021) replicated the task as mentioned above and collected data from 60 participants. Participants were
recruited from the 18-23 age range and English-speaking population using Prolific. Their study involved 11 blocks instead
of 10 and as a result, they had 616 trials.

H.2. Model-based analysis:

The 616 choices made by participants and meta-learning models were divided into 11 blocks of 56 trials each. We obtained
the choices from the models – ERMI, MI, and PFN – by simulating them on the task for a total of 50 runs using the βs
fitted to participants in the Devraj et al. (2021) study. We then fit prototype- and exemplar-based models onto the choices of
humans and models to see if they are better explained by prototype or exemplar-based strategy. To fit their parameters, we
minimize the sum of squared errors (SSE) between observed and predicted probabilities for each participant for a given
block following the original study’s approach:

SSE =

14∑
t=1

(p(k = 1|xt)− p̂1,xt
)2 (11)

where p(k = 1|xt), from Equation 7, is the predicted probability from the model – either GCM or PM – that stimulus xt

belongs to category 1 based on an entire trial segment (56 trials) of data, and p̂1,xt
is the proportion of trials in the trial

segment (out of those in which stimulus xt was seen) in which the participant or model categorized stimulus xt to category
1. We used SciPy’s Sequential Least Squares Programming (SLSQP) method in the SciPy’s optimization module to obtain
the best fitting parameter for the two models as in (Devraj et al., 2021). We then compared the SSE computed using the
best-fitting parameters between the two models as shown in Figure 3(a).

(b)(a) (c) (d)

Figure 8. Supplementary material accompanying Figure 3:(a-c) The average error of exemplar- and prototype-based models fitted to
(a) human choices, (b) simulated choices from ERMI, and (c) simulated choices from PFN for each block of 56 trials. (d) The exceedance
probability of participants’ choices in the Devraj et al. (2021) study for seven computational models. Human data in (a) was reproduced
from Smith & Minda (1998). ERMI and MI were simulated using inverse temperature values fitted to participants’ choices in Devraj et al.
(2021). The mean of the fitted inverse temperature and its standard error were 0.09± 0.01 for ERMI and 0.14± 0.01 for MI, respectively.
The shaded region shows the standard error of the mean.

H.3. Additional observations and results

ERMI is better explained by the exemplar-based model with learning: We fit a linear mixed-effects model to measure
this effect quantitatively. We predict the average error term from the GCM and PM model using blocks and model
as predictors and test the interaction between blocks and model. Blocks (1-10) were mean-centered and the exemplar
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model (GCM) was coded as −1 and the prototype-based model (PM) was coded as 1. We report the coefficient β̂ for the
interaction term in the main paper. We found that ERMI (β̂ = −0.01± 0.004; z = −2.54, p < 0.01) is better explained
by the exemplar-based model with learning whereas choices from MI are explained equally well by exemplar-based and
prototype-based learning (β̂ = −0.002± 0.005; z = −0.47, p = 0.63) as shown in Figure 3

Prototype model cannot learn exceptions: Given that the category structure is non-linearly separable (containing
exceptions), a prototype model cannot explain the data fully even if provided the true category choices as it tends to
miscategorize the exception stimulus from which category. The exemplar-based model (GCM) model, however, has no such
issues and can fit the true choices perfectly.

MI and PFN models find it hard to learn exceptions: A better fit of the prototype model to the MI and PFN in the latter
half of the experiment (as shown in Figure 3 and 8) suggests that, as observed in Shepard’s task, they are not able to learn
exceptions like the prototype model as mentioned before.

I. ERMI shows human-like generalization
I.1. Experiment details for Johansen & Palmeri (2002)

Johansen & Palmeri (2002) conducted their study with 198 participants (out of which 68 were excluded for further analysis)
using four-dimensional stimuli with each dimension taking one of two possible values. The stimuli were “computer-generated
drawings of rockets that varied along four binary-valued dimensions: The shape of the wing (triangular or rectangular), tail
(jagged or boxed), nose (staircase or half-circle), and porthole (circular or star)” (Johansen & Palmeri, 2002). The category
structure used in the study was similar to the ones used in classical studies such as Medin & Schaffer (1978); Nosofsky et al.
(1994b) and is ill-defined in that no single feature along a dimension can be used to perfectly classify stimuli. Rather, the
categories have a family resemblance structure in that category A stimuli tend to have a value of 0 along each dimension,
and category B stimuli tend to have a value of 1 along each dimension. In this case, category 1 contained five stimuli as
follows: [0001, 0101, 0100, 0010, 1000]. The remaining four stimuli belonged to category 2 [0011, 1001, 1110, 1111]. The
stimulus presentation order was randomized within each block. Participants had unlimited time to make their choice on each
trial. After making their choice, they were told whether or not it was a correct choice. Participants completed a total of 288
training trials, or 32 blocks of 9 trials each, in which they saw each stimulus once. However, in addition to the training
block, participants had to perform a transfer block after 2, 4, 8, 16, 24, and 32 blocks of training. In a transfer block, all 16
possible stimuli are shown without any corrective feedback.

I.2. Simulations

We simulated ERMI, MI, and PFN on the Johansen & Palmeri (2002) study for different betas values, from zero to one in
steps of 0.1, for a total of 544 runs. The models interacted with each of the nine training stimuli 32 times with the ordering
of the stimuli shuffled between runs. Predictions for the transfer stimuli were derived by concatenating them – one at a time
– at the end of 32 training blocks in every run. By doing so, we were able to derive the model’s prediction for each unseen
stimulus around 77 times. In Figure 4 and 9, we reported average choice probabilities for the models using the β-term that
minimized the pair-wise Euclidean distance between the human and model’s choice probabilities.

J. Benchmarking on OpenML-CC18
Table 4 contains the full set of results for all tasks and models.

K. Data and materials
We will make all experimental data and code for this project available under the following link: [RETRACTED].
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(a) (b) (c) (d)

 T1: [1 0 1 1] 
T2: [1 0 1 0]
T3: [0 1 1 1]
T4: [1 1 0 1]
T5: [1 1 0 0]
T6: [0 1 1 0]
T7: [0 0 0 0]

Figure 9. Supplementary material accompanying Figure 4: (a-c) Average categorization probabilities of transfer stimuli T1-T7 for (a)
humans (b) ERMI (c) PFN. (d) The encoding scheme used for the seven transfer stimuli is provided for reference. Human data in (a) was
reproduced from Johansen & Palmeri (2002). ERMI and MI were simulated on the same experiment for 77 runs, with inverse temperature
settings that resulted in the lowest mean-squared error compared to humans, which was β = 0.9 for ERMI, and β =0.1 for PFN.

Table 4. Detailed performance metrics of different models on OpenML-CC18 benchmarking suite.

DATA SET LOG. REG. SVM XGBOOST TABPFN ERMI

KR-VS-KP CLASSIFICATION 0.8257 0.8514 0.7986 0.8664 0.8450
CREDIT-G CLASSIFICATION 0.6421 0.6357 0.6350 0.6036 0.6150
DIABETES CLASSIFICATION 0.6771 0.7079 0.6786 0.6886 0.6950
SPAMBASE CLASSIFICATION 0.5407 0.7664 0.7536 0.7993 0.7757
TIC-TAC-TOE CLASSIFICATION 0.5536 0.5950 0.6071 0.5914 0.6071
ELECTRICITY CLASSIFICATION 0.5543 0.6007 0.7036 0.6871 0.6436
PC4 SOFTWARE DEFECT PREDICTION 0.7136 0.7521 0.7886 0.7707 0.7714
PC3 SOFTWARE DEFECT PREDICTION 0.6514 0.7264 0.7357 0.7279 0.7107
KC2 SOFTWARE DEFECT PREDICTION 0.5893 0.7314 0.7257 0.7257 0.7257
KC1 SOFTWARE DEFECT PREDICTION 0.6271 0.6707 0.6743 0.6679 0.6521
PC1 SOFTWARE DEFECT PREDICTION 0.5336 0.5964 0.6514 0.6064 0.6493
WDBC CLASSIFICATION 0.9121 0.9207 0.9014 0.9221 0.9093
PHONEME CLASSIFICATION 0.5793 0.7314 0.6979 0.6921 0.7200
QSAR-BIODEG CLASSIFICATION 0.5779 0.7014 0.6850 0.6921 0.7064
ILPD CLASSIFICATION 0.5493 0.6386 0.6229 0.6121 0.6286
OZONE-LEVEL-8HR CLASSIFICATION 0.6614 0.6907 0.6707 0.6471 0.6950
BANKNOTE-AUTHENTICATION CLASSIFICATION 0.7721 0.9229 0.8457 0.9657 0.9379
BLOOD-TRANSFUTION-SERVICE-CENTER 0.4714 0.5493 0.5879 0.5671 0.6186
PHISHING WEBSITES CLASSIFICATION 0.7929 0.8071 0.8157 0.8157 0.8129
BANK-MARKETING CLASSIFICATION 0.5829 0.5614 0.7386 0.7350 0.7171
WILT CLASSIFICATION 0.5171 0.5736 0.6393 0.6371 0.6507
NUMERAI28.6 CLASSIFICATION 0.4857 0.4779 0.5029 0.4779 0.4986
CHURN CLASSIFICATION 0.6321 0.7271 0.6800 0.7186 0.7329

MEAN ACC. 62.80± 0.66 69.29± 0.62 70.17%± 0.52 70.51%± 0.63 70.95%± 0.54

MEAN RANK 4.52± 0.21 2.76± 0.26 2.61± 0.30 2.85± 0.27 2.26 ± 0.22
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