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ABSTRACT

People can easily evoke previously learned concepts, compose them, and apply the result to solve novel tasks on the first
attempt. The aim of this paper is to improve our understanding of how people make such zero-shot compositional inferences
in a reinforcement learning setting. To achieve this, we introduce an experimental paradigm where people learn two latent
reward functions and need to compose them correctly to solve a novel task. We find that people have the capability to engage
in zero-shot compositional reinforcement learning but deviate systematically from optimality. However, their mistakes are
structured and can be explained by their performance in the sub-tasks leading up to the composition. Through extensive
model-based analyses, we found that a meta-learned neural network model that accounts for limited computational resources
best captures participants’ behaviour. Moreover, the amount of computational resources this model identified reliably quantifies
how good individual participants are at zero-shot compositional reinforcement learning. Taken together, our work takes a
considerable step towards studying compositional reasoning in agents – both natural and artificial – with limited computational
resources.

Introduction

People have an impressive ability to learn from sparse data1. We can acquire a new word from only one encounter2. We can
achieve near-perfect classification rates from only one labelled observation3. We can even ask questions such as “how likely is
it that a newly invented machine could transform a man into a vase?”4, even though we are unlikely to ever encounter such a
machine. Many researchers have proposed that the ability to generalize from sparse data is a hallmark of human intelligence5, 6.

What are the mechanisms that underlie this ability? One mechanism that enables strong generalizations is compositional-
ity5, 7–10, which is the idea that complex entities can be constructed through the combination of primitive elements. People
are generally considered to excel at reasoning compositionally11. They can, for example, combine parts of objects into novel
objects7, 12 or compose previously learned actions to explore in novel contexts8, 13. It has thus been argued that compositionality
equips us with the ability to “make infinite use of finite means”14, 15, allowing us to generalize to novel situations by reusing
and combining past experiences13, 16, 17.

Empirical studies have demonstrated that people have an inherent predisposition towards compositional patterns7, 18–23. For
example, utilizing the function learning paradigm, which involves the learning, completion, and prediction of functional patterns,
Schulz and colleagues18, 19 have demonstrated that humans find it easier to learn about compositional than non-compositional
patterns. Furthermore, they showed that humans exhibit superior abilities to complete and predict compositional functions, as
well as an enhanced capacity for remembering such functions20, 21. These findings extend beyond function learning to other
domains such as spatial structure learning23, 24, concept learning7, 25, shape perception26, and auditory sequence learning27.
Taken together, there is strong evidence for the presence of compositional inductive biases in humans.

While the preference for compositional patterns has received significant attention, how people compose two already learned
functions and act on them in a zero-shot manner remains less well-understood. We attempt to close this gap in the present paper
by studying human compositional reasoning in a reinforcement learning setting. More specifically, we are interested in how
people perform zero-shot compositional inferences on learned latent reward functions. To study this question, we propose a
novel experimental paradigm in which people interact with a sequence of three structured multi-armed bandit tasks20, 28–30 as
illustrated in Fig. 1. The rewards for the first two sub-tasks are sampled from differently structured functions. They are followed
by a third sub-task in which the rewards are set to a composition of the previously encountered functions. The structure of our
task induces a learning curriculum that allows participants to solve the final sub-task in a zero-shot manner – assuming that they
can reason compositionally.

In two experimental studies, we find that people can make such zero-shot compositional inferences in a reinforcement
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Figure 1. Overview of our experimental paradigm. Each task consists of three multi-armed bandit sub-tasks, with
participants performing five trials per sub-task. Each multi-armed bandit task has six arms, each corresponding to different
letters on the keyboard (starting from S to L). Rewards for the arms in our bandit tasks follow a latent function that is dependent
on the spatial position of the arms. The reward functions for the first two sub-tasks are sampled from either the linear or the
periodic family. The rewards for the final sub-task are constructed by composing the reward functions sampled in the two
earlier sub-tasks. We conducted experiments with two different composition rules: an additive rule (experiment 1) and a
change-point rule (experiment 2). In experiment 1, rewards for the final sub-task are constructed by performing an
element-wise summation of sampled rewards from the first two sub-tasks. Whereas in experiment 2, they are constructed by
combining segments of the sampled rewards such that the rewards change from being from one family to another after a certain
number of options. Specifically, rewards in the first segment (i.e. options S-D-F) come from one family – either a linear or
periodic family – and the alternative family in the second segment (i.e. options J-K-L). Note that the order in which these
reward segments are combined in the change-point rule is randomized. If participants learn the latent reward functions in the
first two sub-tasks and apply the compositional rule correctly, they can – in principle – perform zero-shot compositional
inference, meaning that they choose the optimal arm (arm D in the example shown for experiment 1 and arm S in the example
shown for experiment 2) on the first trial of the last sub-task.

learning setting. However, our analyses also indicate that their behaviour deviates systematically from a fully-normative
account. Extensive model-based analyses furthermore reveal that human compositional reasoning is overall best explained by a
resource-rational account31, 32. Taken together, our results suggest that people can make zero-shot compositional inferences but
that their performance is constrained by cognitive demands.

Results
To investigate compositional reinforcement learning in humans, we developed a novel multi-armed bandit paradigm based
on previous works20, 29, 30 as illustrated in Fig. 1. Each task consists of three multi-armed bandit sub-tasks in which rewards
follow a latent function that is dependent on the spatial position of the arms. The reward functions for the first two sub-tasks
are sampled from either the linear or the periodic family of functions. In the final sub-task, reward functions are constructed
by composing the reward functions encountered in the two earlier sub-tasks. We conducted two experiments with different
composition rules: an additive rule and a change-point rule. Our task induces a learning curriculum, which enables us to probe
whether people are able to reason compositionally in a reinforcement learning setting. In particular, we expect people to solve
the final sub-task in a zero-shot manner, selecting the best option on the first trial. To have a comparison, we also consider a
condition without a curriculum. In this non-curriculum condition, people do not interact with the first two sub-tasks and instead
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directly observe the composite function from the final sub-task. We set the length of each sub-task to five, leading to 15 trials
per task in the curriculum and five trials per task in the non-curriculum condition. Note that the number of trials per sub-task is
less than the number of available options, thereby preventing participants from exhaustively trying out all options and forcing
them to generalize based on the underlying function.

Experiment 1: Additive rule
We conducted an online behavioural study, on the Prolific platform, following the structure of the just outlined task to test the
underlying mechanisms behind how people compose. Participants played a game under a cover story that they were interacting
with slot machines produced by two manufacturers (Blue Lagoon and Green Geeks). They were told that all slot machines
from the same manufacturer behaved similarly. However, participants were not told which manufacturer each slot machine
belonged to, but had to figure this out through trial and error. In the curriculum condition, participants played with a slot
machine from each manufacturer before playing a compositional slot machine that combined the two. In the non-curriculum
condition, participants only played with the compositional slot machine. The study involved 20 tasks per participant, leading to
300 trials in total for the curriculum condition and 100 for the non-curriculum condition. We provide further details about the
experiment and participants in the Materials and Methods section.

Behavioural analysis
First, we wanted to establish that people successfully composed reward functions in our task. For the corresponding analyses,
we considered two behavioural measures: regrets and the probability of making optimal choices. Fig. 2(a) shows the mean
regret of participants in the compositional sub-task. The regret is computed by taking the difference between the highest
reward in the given sub-task and the reward for the action selected by the participant. Participants are said to have successfully
performed zero-shot compositional inference if they choose the optimal arm on the first trial of the compositional sub-task
(or have a regret measure of 0 on the first trial). We see from the regrets that people performed better than chance right from
the outset for the curriculum condition (Mean (M) = 2.163, Standard Error (SE) = 0.116; t1 =−19.57, p < .001) whereas
they start at chance-level for the non-curriculum condition (M = 4.055, SE = 0.059). To further quantify the effects of
zero-shot compositional inference, we performed a mixed-effects linear regression on the regrets in the final sub-task with
trials, conditions, and their interaction as fixed effects (and with random slopes and intercepts per participant for all of these
factors). This analysis revealed that participants in the curriculum condition had a significantly lower regret on the first trial of
the final sub-task than participants in the non-curriculum condition (β̂ =−1.18±0.115;z =−10.24, p < .001). In addition, a
comparison of the probability for making an optimal choice on the first trial between curriculum and non-curriculum conditions,
shown in Fig. 2(b), confirmed that people in the curriculum condition (M = 0.382, SE = 0.02) made optimal choices more
frequently than in the non-curriculum condition (M = 0.192, SE = 0.07; t =−9.242, p < .001). Regret performance on the first
trial of the curriculum condition was even better than performance on the last trial of the non-curriculum condition (M = 2.40,
SE = 0.13; t = 2.72, p < 0.01), suggesting that learning within the last sub-task cannot match the performance boost gained
from compositional inference.

While people were able to compose in a zero-shot manner, they did not do so perfectly. Their initial regrets in the final
sub-task (M = 2.163, SE = 0.116; t = 34.60, p < .001) deviated significantly from ideal compositional reasoning. Further
evidence of people’s suboptimality comes from the observation that they continued learning during the final sub-task in
the curriculum condition (which would not be needed if they were to engage in perfect zero-shot compositional inference).
To quantify this effect, we fitted a mixed-effects linear regression model using per-trial regret in the last sub-tasks as the
dependent variable, and the corresponding trial number as both fixed effects and random effects over participants. The
results of this model showed a significant fixed effect of trial number (β̂ =−0.32±0.02;z =−13.88, p < .001) onto regret,
confirming that the performance of participants improved with additional interactions. The observed improvement in the
curriculum condition (β̂ =−0.21±0.02;z =−12.26, p < .001) was generally weaker than that in the non-curriculum condition
(β̂ =−0.42±0.02;z =−21.80, p < .001).

We also inspected the marginal action distribution of participants on the first trial of the final sub-task shown in Fig.
2(c). We see that the mode of the participants’ action distribution matches the optimal choice, but that human behaviour also
systematically deviates from optimal behaviour. Particularly, one interesting feature is that people seem to pick corner arms –
especially the left-most one – frequently. This could reflect a bias that has been observed in other studies of people exploring
different options starting from left to right29.

To better understand the mistakes that people make during compositional reasoning, we looked at how participants’
performance in the first two sub-tasks can explain their behaviour on the final compositional sub-task. We first classified
choices on the first trial of the compositional sub-task into four categories: first, picking the optimal arm as predicted by
compositional inference; second, a non-optimal corner arms category which includes trials where people picked the corner

1t-values are reported from a non-parametric independent two-sample t-test (two-tailed) using 1000 random permutations
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Figure 2. Behavioural results of experiment 1. (a) Mean regrets for participants in the final sub-task for the two conditions:
curriculum and non-curriculum. The dotted lines in black indicate mean regret from a random policy. (b) Probability of
participants making the optimal choice on the first trial of the final sub-task for the curriculum and non-curriculum condition.
Error bars in (a) and (b) represent standard errors computed over participants. (c) Marginal distribution of choices on the first
trial of the final sub-task for the two conditions. The bar in gold shows the marginal distribution of choices for the optimal
policy. (d) Explaining choices of participants in the last sub-task based on their task performance in the first two sub-tasks. We
classified the choices on the first trial into four categories: optimal arm (top-left), non-optimal corner arms (top-right),
non-optimal phasic arm (bottom-left), and neither of the above (bottom-right). Then, we fit a Bayesian logistic regression
model from the total regrets (summed over all trials) in the first two sub-tasks onto each of these categories. The sub-plots show
the histogram of the posterior regression coefficients of linear and periodic sub-tasks for all four choice categories.

arms despite them not being the optimal choice; third, a non-optimal phasic arms category which includes trials where arms
belonging to the same phase as the periodic sub-task were picked even when it was not the optimal choice; and fourth, a
category which includes all trials where choices did not fall into any of the three categories mentioned above. We then fitted a
separate Bayesian logistic regression model in PYMC3 from the total regrets (summed over all trials) in the first two sub-tasks
onto each of these four choice categories coded as a binary variable. Fig. 2(d) visualized the posterior regression coefficients
from these fitted models with each category shown in a separate sub-plot. When the dependent variable was picking the optimal
choice, the posterior regression coefficients were negative with similar means for both linear (M =−0.038, SE = 7.319e−05)
and periodic (M = −0.035, SE = 4.925e− 05; t = −40.728, p < 0.001) sub-tasks. This suggests that participants pick the
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optimal arm when they learn both the sub-tasks well. The coefficients for regrets of the linear sub-tasks were more negative
(M =−0.089, SE = 8.107e−05) than that of periodic regrets (M =−0.015,SE = 5.040e−05; t =−779.036, p < .001) when
the dependent variable was non-optimal corner arms. This result suggests that people tend to pick non-optimal corners arms
when they learned linear functions better than periodic functions. When the dependent variable was non-optimal phasic arms,
the posterior regression coefficients for regrets from the periodic sub-task were lower (M =−0.0352,SE = 0.477e−04) than
that of the linear sub-task (M =−0.0048, SE = 7.0762e−05; t = 356.072, p < 0.001). This result indicates that people pick
one of the phasic arms from the periodic sub-task on the first trial of the compositional sub-task when they perform better in the
periodic sub-task. Lastly, the regression coefficients were positive for both the regrets from the linear sub-task (M = 0.1498,
SE = 1.167e−05; t = 450.07, p < 0.001) and those from the periodic sub-task (M = 0.0874, SE = 7.502e−05) when the
dependent variable was neither of the categories above. This result suggests that people pick neither the optimal, the corner nor
the phasic arm when they have not learned the underlying functions in either of the two sub-tasks well.

Taken together, behavioural results from experiment 1 suggest that people can compose in a zero-shot fashion but are not
perfect. However, their mistakes are highly structured and can be predicted based on how well they have learned the different
components of the first two sub-tasks.

Model-based analysis
In our compositional bandit task, people can – in principle – perform near-perfect if they manage to compose. However, the
behavioural analysis above revealed that people (despite generally managing to compose) systematically deviated from optimal
behaviour. To get a better understanding of these deviations and the cognitive processes behind them, we investigated people’s
behaviour using computational models.

We considered six different computational models for explaining participants’ choices in our task. Four of these are
Bayesian models that vary along two dimensions: first, whether or not they can generalize learned values from one option to the
other, and second, whether or not they can compose the learned values from the first two sub-task to reason on the final sub-task.
The Bayesian models include a Bayesian mean-tracker (BMT)33 which is a model that does not learn about the underlying
functional structure but instead updates its beliefs about rewards for each option independently, as well as a model that learns
functions by generalizing across options within a sub-task based on the idea of Gaussian Process regression (GPR)18, 34, 35. For
each of these two models, we considered one variant that cannot compose and instead learns separate reward functions for each
sub-task, and another one that initializes its predictions in the final sub-task to the composition of the learned means from the
first two sub-tasks.

In addition, we also considered two recurrent neural network models that were trained via meta-reinforcement learning36, 37.
Unlike the Bayesian models from above, these models learn inductive biases about latent reward functions via trial-and-error,
without requiring an explicit specification of priors. The first of these models is RL2 – a model that is known to approximate
the Bayes-optimal policy for the distribution of tasks it was trained on38, 39, which thereby allows us to test whether people
compose optimally. The second is a resource-rational extension of RL2 referred to as RR-RL240. The particular resource
constraint considered by RR-RL2 is the description length of the meta-learned recurrent neural network, which is defined as
the number of bits required to store its parameters. RR-RL2 captures the hypothesis that people attempt to achieve optimal
performance but that they are subject to the constraint of relying on an algorithm with limited computational complexity. We
fitted RR-RL2’s description length on a participant-by-participant basis reflecting the assumption that different participants use
different amounts of computational resources.

We simulated all of these models on our compositional bandit task and measured their performance in the final sub-task.
We found that performance on the first trial was near-optimal for the four models that can compose (the compositional BMT
and GPR, as well as the two meta-learning agents), indicating that they can re-use the earlier learned functions to compose new
functions in a zero-shot manner; for detailed visualizations, see Supplementary Information (SI).

To obtain a quantitative measure of the goodness-of-fit of models to human choices, we conducted a Bayesian model
comparison of all previously outlined models. We measured the fit to human choices based on two metrics: posterior model
frequency and exceedance probability41. The posterior model frequency measures how often a model offers the best explanation
in the population, while the exceedance probability measures how likely it is that a given model is the most frequent explanation.
Further details about this model comparison procedure can be found in the Materials and Methods section.

This model comparison revealed that RR-RL2 captures how people behave on the first trial of the compositional sub-task
the best according to both metrics, with exceedance probability amounting to 0.99, while its posterior model frequency
was 0.704± 0.002. The compositional BMT is the second-best model with 4.33e− 09 and 0.288± 0.002 on exceedance
and posterior model frequency respectively. Interestingly, we found that the two models that performed best in our model
simulations (compositional GPR and RL2) did not predict human behaviour well. Taken together, these results support the
hypothesis that people do not compose in a fully optimal way, but that their ability to reason compositionally is driven by
principles of resource rationality.

To further support the model comparison results, we simulated behaviour from the two best-fitting models and compared
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Figure 3. Modelling results of experiment 1. (a) The posterior model frequency of participant choices on the first trial of the
last sub-task. (b) Comparison of the probability of making the optimal choice on the first trial of the last sub-task between
people and simulations from the best-fitting models: RR-RL2 and compositional BMT. (c) Correlation between fitted
description length of RR-RL2 (plotted in log-scale) and the probability of making an optimal choice on the first trial of the last
sub-task. The fitted regression line is shown in green, with the shaded portion showing the 95% confidence interval.

them against human behaviour. With regards to the probability of making the optimal choice on the first trial, we found
that simulations from RR-RL2 (M = 0.366, SE = 0.0154) matched human behaviour (M = 0.382, SE = 0.021) whereas the
compositional BMT differed significantly (M = 0.459, SE = 0.016; t =−2.938, p < .01).

Next, we examined whether the fitted description lengths of RR-RL2 could capture task performance. To do this, we
correlated the probability of humans making the optimal choice on the first trial against the fitted description lengths for each
participant. We found that description length correlated significantly with optimality (r = 0.359, p < .001) as illustrated in Fig.
3(c). Likewise, we also observed a significant negative correlation (r =−0.36, p < .001) between fitted description lengths and
mean regrets on the first trial.

We then analysed whether fitted description lengths can be used to explain the types of choices participants make. For this,
we grouped participants based on their fitted description lengths into two groups. In the first group, we included participants
whose fitted description lengths were in the range of 1000 to 10000 (N = 39), and in the second group, we considered those
whose fitted description lengths were in the range of 10 to 100 (N = 17). We then compared the probability of making the
optimal choice on the first trial of the final sub-task between the two groups. We found that participants in the first group
performed near-perfect composition, whereas the choices from participants in the second group were far away from optimality
(for further details, see SI). Thus, fitted description lengths can be used to cluster participants into those who can perform
near-optimal zero-shot compositional inference and those who cannot.

Lastly, we looked at how regrets on the first two sub-tasks influence behaviour on the first trial in RR-RL2, just like how we
did it in people. We found that the posterior regression coefficients of the model match human behaviour qualitatively with
slight deviations. The model picks the non-optimal corner arms and non-optimal phasic arms when it learns one sub-task better
than the other (with performance in periodic sub-task having a greater influence on the linear in both cases) and follows a
completely different strategy from the ones above when it does not learn both the sub-tasks well. An interesting deviation was
that, unlike humans who make more optimal choices when they learn both sub-tasks equally well, the model does so when they
learn the linear sub-task better than the periodic sub-task (for detailed results and visualizations, see SI).

Taken together, results from behavioural and model-based analyses suggest that people can perform zero-shot compositional
inference but still deviate systematically from optimal behaviour. Their choices are best explained by a meta-reinforcement
learning model (RR-RL2) that learns a solution with limited computational resources. Furthermore, we find the simulated
behaviour from RR-RL2 matches human behaviour well and that description length – the parameter that controls computational
resources of RR-RL2 – correlates with the probability of making an optimal choice on the first trial of the compositional
sub-task.2

Experiment 2: Change-point rule
Next, we wanted to verify that the results obtained in the previous section transfer to another compositional rule. We, therefore,
conducted a second experiment using a change-point rule. The experimental procedure followed the same structure as the

2Note that in the main text, we have focused on model-comparison results for the first trial of the compositional sub-task as we are mostly interested in
zero-shot compositional inference. However, we also evaluated our models over all trials of the compositional sub-task. The results of these analyses are
summarised in the SI.
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additive rule but with participants now being tested on a slot machine whose rewards were composed based on the change-point
rule (see Fig. 1 for an example).

Behavioural analysis
Like in the additive rule experiment, we see that people perform much better than chance right from the outset for the curriculum
condition (M = 1.937, SE = 0.081; t =−15.105, p < .001) while starting at chance-level for the non-curriculum condition
(M = 3.096, SE = 0.060) as shown in Fig. 4(a). We also performed a mixed-effects linear regression analysis as we did in
the first experiment which confirmed that participants in the curriculum condition had a significantly lower regret on the first
trial of the final sub-task than participants in the non-curriculum condition (β̂ =−1.18±0.115;z =−10.24, p < .001). When
looking at the probability of picking the optimal arm in Fig. 4(b), we also find that people make better choices in the curriculum
condition (M = 0.337, SE = 0.016) than in the non-curriculum condition (M = 0.168, SE = 0.008, t =−9.347, p < .001). The
performance in the curriculum condition is better than in the non-curriculum condition for all trials, which was also the case in
the additive rule. Thus, similar to the additive rule experiment, people are able to perform approximate zero-shot compositional
inferences.

Even though people were able to compose in a zero-shot manner, they were again not flawless. Their initial regrets in
the final sub-task (M = 1.937, SE = 0.081; t = 38.25, p < .001) deviated significantly from ideal compositional reasoning,
thereby corroborating our results from the previous experiment. In addition, people’s suboptimality was underlined by the
persistent presence of learning effects in the curriculum condition (β̂ =−0.216±0.013;z =−16.112p < .001).

We also inspected participants’ marginal action distribution on the final sub-tasks first trial in Fig. 4(c). We see that the
mode of the participants’ action distribution lies at the optimal choice. However, human behaviour systematically deviates from
optimal behaviour as people pick sub-optimal options frequently. People also tend to pick the corner options – especially the
left-most option – quite frequently as they did in the additive rule.

Finally, we repeated the regret analysis we did for the additive rule to better understand which kind of mistakes people
make. The results of this analysis are summarized in Fig. 4(d). We see that posterior regression coefficients for regrets of
both linear (M = −0.0423,SE = 7.518e− 05) and periodic (M = −0.0464,SE = 5.038e− 05) sub-tasks are negative and
have overlapping distributions in cases where people picked the optimal option (t = 45.874, p < .001). This suggests that
learning both linear and periodic sub-tasks equally well predicts good performance on the first trial. When people pick
non-optimal corner arms, their performance in the linear sub-task (M =−0.0607,SE = 7.663e−05) seems to be driving their
behaviour more than their performance in the periodic sub-task (M =−0.0305,SE = 5.0042e−05). However, on the contrary,
picking the non-optimal phasic arm is not driven strongly by periodic sub-task performance with regression coefficients
for both linear (M = −0.0259,SE = 7.0662e− 05) and periodic (M = −0.0203,SE = 4.672e− 05) sub-tasks overlapping
(t = −66.174, p < 0.001). Lastly, the posterior regression coefficients are distributed on the positive axis for both linear
(M = 0.114,SE = 9.796e− 05) and periodic (M = 0.0747,SE = 6.368e− 05) regrets when predicting non-optimal choice
belonging to neither to corner or phasic arms.

Model-based analysis
The results for model-based analyses with the change-point rule mirrored that of the additive rule. We find again that RR-RL2

captures best how people compose according to both metrics with exceedance probability amounting to 0.99, while its posterior
model frequency was 0.741±1.729e−03. The compositional BMT is the second-best model with an exceedance probability
of close to 0 and a posterior model frequency of 0.253±1.702e−03 as visualized in Fig. 5(a). These results thus show again
that people do not compose in a fully optimal way, but that their ability to reason compositionally is instead impeded by
computational constraints.

We simulated behaviour from the two best-fitting models with their parameters fitted to participant behaviour. Looking at
the probability of selecting the optimal choice, we found that simulations from RR-RL2 (M = 0.2922,SE = 0.0132) matched
human behaviour (M = 0.3372,SE = 0.0158) more closely than the compositional BMT (M = 0.2862,SE = 0.0069; t =
2.9560, p < .01) as shown in Fig. 5(b).

We found that fitted description lengths correlated significantly with the probability of participants making an optimal
choice for the change-point rule as well, showing a correlation coefficient of r = 0.487 (p < 0.001) as shown in Fig. 5 (c). The
result also holds when we use regrets as a performance measure (r =−0.448, p < 0.001).

Following our earlier analysis, we grouped the participants based on their fitted description lengths into two groups with
the first group including participants with fitted description lengths between 1000 to 10000 (N = 58) and the second group
including participants with fitted description lengths between 10 to 100 (N = 25). We compared zero-shot compositional
inference between the two groups (for detailed analysis, see SI) and found again that participants in the first group performed
near-perfect zero-shot compositional inferences, whereas the choices from participants in the second group were far away from
optimality.
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Figure 4. Behavioural results of experiment 2. (a) Mean regrets for participants in the final sub-task for the two conditions:
curriculum and non-curriculum. The dotted lines in black indicate mean regret from a random policy. (b) Probability of
participants making the optimal choice on the first trial of the final sub-task for the curriculum and non-curriculum condition.
Error bars in (a) and (b) represent standard errors computed over participants. (c) Marginal distribution of choices of
participants on the first trial of the final sub-task for the two conditions. The bar in gold shows the marginal distribution of
choices for the optimal policy. (d) Explaining choices of participants in the last sub-task based on their task performance in the
first two sub-tasks. The choices on the first trial were classified into four categories: optimal arm (top-left), non-optimal corner
arms (top-right), non-optimal phasic arm (bottom-left), and neither of the above (bottom-right). Then, we fit a Bayesian logistic
regression model from the total regrets (summed over all trials) in the linear and periodic sub-tasks onto each of these
categories. The sub-plots show the histogram of the posterior regression coefficients of linear and periodic sub-tasks for all four
choice categories.
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Figure 5. Modelling results of experiment 2. (a) The posterior model frequency of participant choices on the first trial of the
last sub-task. (b) Comparison of the probability of making the optimal choice on the first trial of the last sub-task between
people and simulations from the best-fitting models: RR-RL2 and compositional BMT. (c) Correlation between fitted
description length of RR-RL2 (plotted in log-scale) and the probability of making an optimal choice on the first trial of the last
sub-task. The fitted regression line is shown in green, with the shaded portion showing the 95% confidence interval.

Finally, we inspected how performance on the first two sub-tasks influenced behaviour on the first trial of the compositional
sub-task in RR-RL2. We found that overall the posterior regression coefficients of the model’s behaviour in linear and periodic
sub-tasks match human behaviour quite well. They pick the non-optimal corner arms and non-optimal phasic arms when they
learn one sub-task better than the other and they follow a completely different strategy from the ones above when they do not
learn both the sub-tasks well. However, as in experiment 1 but to a smaller extent, the model makes optimal choices when they
learn the linear sub-task better than the periodic sub-task. The results of these analyses are summarised in the SI.

Taken together, these results mirror those we had for the additive rule with similar factors affecting human behaviour in the
compositional sub-task. This suggests that people’s ability to do compositional inference is robust with regard to the specific
way in which functions are composed.

Discussion
Compositionality is at the core of people’s ability to generalize from sparse data. It has even been argued to be an essential
component of intelligence more generally5, 7, 11. However, how people use this ability to make decisions is less well understood.
To address this question, we have proposed a novel experimental paradigm where people first need to learn about latent
reward functions in two sub-tasks to be able to pick the most rewarding option on the first trial of the third sub-task. We
found that people indeed perform this kind of zero-shot compositional inference, but they deviate systematically from ideal
behaviour. Even so, their mistakes were not random but instead highly structured. Extensive model-based analyses revealed
that RR-RL2 – a meta-learned neural network model that accounts for limited computational resources – captures participants’
behaviour the best. Mistakes made by this model were also systematic and predicted by similar factors that predicted human
suboptimal choices. This result indicates that people seem to follow resource-rational principles when making compositional
inferences, thereby expanding on earlier results from other cognitive domains such as decision-making42, planning43, 44, and
problem-solving45.

Relation to empirical works in compositional reinforcement learning
Previous work has investigated how people structure prior knowledge and compose specific components of this learned
knowledge to generalize efficiently in reinforcement learning tasks. Xia and Collins13 have used the options framework from
hierarchical reinforcement learning to show that humans can learn hierarchical options and do so such that the temporal ordering
of the learned options remains intact. They further showed that people, akin to their model, can compose the learned options to
explore novel contexts, thereby speeding up learning. Looking into how learned knowledge guides generalisation, Franklin
and Frank8 showed that human learners decompose learned task structures into distinct components such as rewards and state
transitions. They devised a meta-learning agent46 that trades off re-using these components jointly or compositionally and
showed that, similar to this agent, humans too act adaptively on these components depending on the statistics of the task
environment. In comparison to our work, these previous studies focused on how people generalize in a sample-efficient way
to novel tasks and not on zero-shot compositional inference. Therefore, our work complements these earlier investigations
by addressing a distinct dimension of compositional reasoning. It is worth noting that adapting the proposed models to our
experimental paradigm is not straightforward. However, our compositional GPR shares a similar flavour to the hierarchical
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models proposed by Xia and Collins, indicating potential conceptual connections between different approaches to compositional
reasoning.

Model complexity and compositional inference
The relationship between description length and human performance has received considerable attention in previous re-
search20, 23–25. However, researchers have typically investigated how the description length of the task influences performance.
For instance, Amalric and colleagues24 asked participants to predict and repeat sequences displayed on a clock-like display,
varying the complexity of the sequences by changing the length of the generating program. They found a correlation between
the difficulty of predicting (and repeating) a given sequence and its complexity. In contrast, we investigated how the description
length of strategies applied by individual participants influenced their performance. We found that different participants apply
strategies with different description lengths, implying that they use varying amounts of cognitive resources to perform the task.
Thus, task performance is influenced not only by external factors such as task difficulty but also by internal factors such as
individual differences in cognitive resources.

Neural networks and compositionality
In contrast to the prevailing notion that neural network models struggle with compositional reasoning47, 48, we found that the
model that captured human behaviour best in our experiment was a neural network model, suggesting that these models are not
inherently unable to reason compositionally. Instead, it matters how they are set up and how they are trained. This result is
supported by other recent studies demonstrating that neural network models can be good models of human compositionally49–53.
For example, Lake49 demonstrated that meta-learning can be used to train sequence-to-sequence networks that generalize
compositionally in human-like ways on the SCAN data set47, while Kumar and colleagues50 found that augmenting meta-
reinforcement learning agents with an auxiliary objective to reproduce task descriptions aligns them with human behaviour in a
setting that requires reasoning about compositionally-generated patterns. Finally, Dekker and colleagues51 designed neural
network architecture with an inductive bias for compositional reasoning using a Hebbian gating process, and demonstrated that
the resulting model learns composable functions similar to how these functions are learned by people.

Limitations
While one might argue that the proposed compositional bandit task is too simplistic, we found that human behaviour system-
atically deviated from optimality, implying that the task complexity was appropriate for the investigated research question.
Furthermore, our task has two main advantages compared to those previously used to study compositional reasoning. First, it is
directly inspired by experiments used to study human learning in structured environments29, allowing us to connect our findings
to previous work on human cognition. The second advantage is its simplistic design. This simplicity allowed us to build
computational models that solve the task near-optimally, picking the best option in a zero-shot fashion. Nevertheless, it might be
interesting to develop more naturalistic compositional reasoning tasks in future work to test if our model-based predictions still
hold. There are additional variants of our paradigm that could be considered. For example, one could test whether increasing the
length of the first two sub-tasks causes people to make better compositional inferences. People’s performance could furthermore
be boosted by relying on a purely observational setting in which options in the first two sub-tasks are presented in a structured
manner (for example from left to right).

We also note two shortcomings on the modelling side. First, we did not consider resource-rational Bayesian models in
our model-based analyses, as building such models is not straightforward. In contrast to this, limited resources are easy to
account for in the meta-learning setting39 which is why we relied on such models instead. Second, our models assume each
task to be independent of each other. This may be in contrast to humans who could show learning-to-learn effects across the
entire experiment. For example, it might be the case that some participants need a few trials to apply the compositional rule
correctly or need a few tasks to correctly learn the underlying functions. It might even be the case that some participants
start doing compositional reasoning only after an Aha! moment54. Learning-to-learn effects could be incorporated into both
the Bayesian and the meta-learned models. For the Bayesian models, one could build on the work of29 who used a simple
clustering algorithm to capture the learning-to-learn behaviour across tasks. For meta-learning agents, it would in principle
be possible to train over samples of entire experiments (i.e., 20 successive tasks) where each experiment is sampled from a
parameterized distribution of experiments. However, training such agents is challenging in practice especially since gradients
need to be propagated over longer horizons.

Conclusion
We introduced a novel experimental paradigm and two complementary computational approaches for studying zero-shot
compositional reinforcement learning in people. We showed that while people can perform zero-shot compositional inference
in our task, their choices were better explained by a resource-constrained model than by optimal zero-shot compositional
inference. Thus, our results provide a new perspective to the understanding of human compositional inference by considering
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the influence of cognitive resources. Taken together, our work takes a considerable step towards understanding compositional
reinforcement learning in humans, symbolic, and sub-symbolic agents under computational constraints.

Materials and Methods
In this section, we provide details of the experimental methods and computational models used to analyse compositional
reinforcement learning in humans. In the experimental methods subsection, we describe the task parameters, experimental
design, participants, and ethics approval. In the computational methods subsection, we expand on the computational models
and explain the methods used to fit these models to human behaviour along with the model comparison procedure.

Experimental methods
Participants
We recruited 200 participants (103 female, Mage = 28.90) through the Prolific platform for experiment 1. The study was
approved by the local ethics committee. Participants were randomly assigned to the curriculum or non-curriculum condition.
All participants had an approval rate of 95% or more, were fluent English speakers from the United States, and were 18 years of
age or older. Participants were rewarded a base payment of £2 and a performance-dependent bonus payment up to £2.5. For
experiment 2, we recruited 211 participants (96 females, Mage = 27.58) through the Prolific platform. The rest of the study
parameters remained the same as the additive rule.

Task
Each task consisted of three multi-armed bandit sub-tasks in which rewards follow a function that is dependent on the spatial
position of arms:

rt = f (at)+ εt εt ∼ N (0,0.1) (1)

where t denotes the time-step, at ∈ {0, . . . ,5} the arm selected in time-step t and εt is an additive noise term. Reward functions
flinear and fperiodic for the first two sub-tasks are sampled from either the linear or the periodic family as shown below:

flinear(at) =

(
2at

5
−1
)

w+b+ζ w ∼ U (−2.5,2.5),b ∼ U (2.5,7.5) (2)

fperiodic(at) = A |sin(0.5π (at −φ))|+b+ζ A ∼ U (0,7.5),φ ∈ {0,1},b ∼ U

(
0,

A
1.4

)
(3)

where U (a,b) is a uniform distribution on the interval [a,b] and ζ ∼ N (0,0.2) is an additive noise term. The parameters were
chosen after several rounds of piloting to make it easy for participants to perform the task well on average. For example, we
found that excluding linear functions with very low slopes and periodic functions with very small amplitudes helped them learn
the periodic and linear sub-tasks more easily and hence, improved their performance on the task overall.

Reward functions in the final sub-task were constructed by composing the reward functions encountered in the two earlier
sub-tasks. We considered two different composition rules, an additive rule and a change-point rule:

fadditive(at) = flinear(at)+ fperiodic(at) (4)

fchange-point(at) =

{
flinear(at) if at ∈ {0,1,2}
fperiodic(at) otherwise (5)

The order of composition in the change-point function was randomized. We set the length of each sub-task to 5 trials,
leading to 15 overall trials per task. Note that the number of trials per sub-task was less than the number of available options.
This prevents an agent from exhaustively trying out all options and forces it to generalize based on the underlying function.

Experimental design
We conducted an online behavioural study following the structure of the compositional bandit task outlined earlier to test the
underlying mechanisms behind how people compose. Participants were told that they were gamblers visiting the fictional town
of “Bandit City”. They visited multiple casinos (20 in total) in which they played different sets of slot machines. Each casino
had two slot machines made by two different companies, called Blue Lagoon and Green Geeks, with their colour (included in
the name) indicating the manufacturer. Participants were informed that all slot machines from the same company behaved
similarly (i.e. rewards are sampled from the same underlying function, Equation 2 or 3), but were not told which reward
function belonged to which company. They had to figure this out via trial and error during the experiment. However, they
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were shown two canonical examples from each reward function in the task instruction phase to get an idea of how samples
from these reward functions could look like. In each casino, participants had five trials per slot machine, with the goal of
winning as many coins as possible. In the curriculum condition, they would first interact with a slot machine from each
of the two manufacturers. Following their interactions with the two slot machines, participants were tested on a new slot
machine, which was a composition of the two previously played machines. Thus, in the curriculum condition, participants
interacted with bandits for a total of 300 trials (breakup: 5 trials per sub-task × 3 sub-tasks × 20 tasks). Participants assigned
to the non-curriculum condition followed the same task structure as the curriculum condition but with minor changes. In this
condition, participants were told that the manufacturers only allowed them to play against the compositional slot machine. As a
result, participants only interacted with one slot machine with rewards coming from the additive composition which results in a
total of 100 trials (breakup: 5 trials per sub-task × 1 sub-task × 20 tasks)

Computational models
In this section, we describe the models that can perform the task with each model making a different assumption on how people
could be approaching our task. A complete description of the models can be found in the SI.

Bayesian models
Under Gaussian assumptions, a Bayesian Mean-Tracker is often used to track a time-varying reward function ft(a) for option a
on trial t. The mean is assumed to change over trials according to a Gaussian random walk:

ft+1(a)∼ N
(

ft(a),σ2
ζ

)
(6)

where σζ = 0.001. We also considered a variant of BMT model that can compose learned rewards called compositional BMT.
This model follows the same setup as BMT but has its prior mean for the last sub-task initialized to the composition of learned
means from the first two sub-tasks. We provide additional details about model learning and inference in the SI.

Gaussian Process Regression models learn a distribution over functions f (a) defined by a mean function µ(a) and a
covariance, or kernel function k(a,a′), where a and a′ are arms of the bandit. The mean function defines the expected function
value, while the covariance function controls the dependence between the function values for different inputs:

f (a)∼ G P(µ(a),k(a,a′)) (7)
µ(a) = E[ f (a)] (8)

k
(
a,a′

)
= E

[
( f (a)−µ(a))

(
f
(
a′
)
−µ

(
a′
))]

(9)

For the GP-based agent, we considered the GPR model with radial basis function (RBF) as the kernel. kRBF allows the GPR
model to generalize its learned value estimates depending on how (spatially) similar the options are to each other.

kRBF
(
a,a′

)
= exp

(
−1

2
(
a−a′

)⊤
Θ

−2 (a−a′
))

(10)

where Θ is the length scale hyperparameter. Like BMT, we assume that our GPR agent maintains a separate GP for each
sub-task and by design, also cannot do any compositional inference.

As GPRs with appropriate priors can approximate the true generative model used for sampling the reward distributions in
our task. We constructed a GPR model with compositionality built in, called compositional GPR. Such a model can compose
the learned reward estimates from the first two sub-tasks and hence, reason compositionally on the third sub-task. We again
assume the agent maintains a separate GP for each sub-task. We set the prior mean of the GPs corresponding to the first two
sub-tasks to zero. The covariance function for the first sub-task is defined through a linear kernel klinear defined as

klinear
(
a,a′

)
= va⊤a′ (11)

where v is the scale hyperparameter. While the covariance function of the second sub-task is defined through a periodic kernel
kperiodic defined as

kperiodic
(
a,a′

)
= exp

(
−2sin2 (π | a−a′ | /p)

η2

)
(12)

where p is a hyperparameter that determines the period length and η is a lengthscale hyperparameter.
The means and kernels for the final sub-task are obtained by composing the means and kernels from the first two sub-tasks55.

For the first trial of the additive composition, the kernel is set to the mean of the learned linear and the periodic kernel from the
two sub-tasks. The compositional additive kernel kadditive is defined as:

kadditive
(
a,a′

)
= 0.5(klinear

(
a,a′

)
+ kperiodic

(
a,a′

)
) (13)
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While the prior mean for additive composition is set to the mean of the previously learned mean functions from the linear and
periodic sub-tasks. For the first trial of the change-point compositions, the kernel entries are set to that of the linear kernel if
both arms belong to the linear function, the periodic kernel if both belong to the periodic function, and zero otherwise. The
compositional change-point kernel kchange-point is defined as:

kchange-point
(
a,a′

)
= klinear

(
a,a′

)
αlinear

(
a,a′

)
+ kperiodic

(
a,a′

)
αperiodic

(
a,a′

)
(14)

where

αlinear
(
a,a′

)
=

{
1 if a,a′ ∈ {0,1,2}
0 otherwise (15)

αperiodic is defined analogously, giving a value of 1 whenever both arms’ a,a′ ∈ {3,4,5}. Note that we randomized whether the
first three arms would belong to the linear or the periodic function. The prior mean in the change-point composition is set to the
means learned in linear and periodic sub-tasks for the corresponding arms.

Meta-reinforcement learning
The version of RL2 we use consists of a recurrent neural network (RNN) network followed by two linear networks that output a
policy and a value estimate respectively36, 37. We denote the joint vector of parameters of this model with W. The network
receives task-relevant observations ot along with the action at−1 and reward from the previous time step rt−1 as input and
outputs a policy π(at |ht ,W) and a value estimate conditioned on the updated hidden state of the RNN. RL2 is trained on
samples from a task distribution p(ω) to find the policy that maximizes the sum of rewards in an episode of finite horizon H.
The full objective function being optimized is shown in Equation 16:

max
W

Ep(ω)∏ p(rt ,ot+1|at ,ω)π(at |ht ,W)

[
H

∑
t=1

rt

]
(16)

The particular resource constraint considered in RR-RL2 is the description length of the meta-learned RL algorithm, which
is defined as the number of bits required to store its parameters. Mathematically, this can be accomplished through a simple
modification of Equation 16:

max
Λ

Eq(W|Λ)p(ω)∏ p(rt ,ot+1|at ,ω)π(at |ht ,W)

[
H

∑
t=1

rt

]
(17)

s.t. KL[q(W|Λ)∥p(W)]≤C

RR-RL2 differs from RL2 in two important ways. First, it uses a stochastic parameter encoding over neural network weights
q(W|Λ) instead of a point estimate. Second, it places a constraint on the Kullback–Leibler (KL) divergence between q(W|Λ)
and a prior p(W), effectively limiting the number of bits that are needed to store the network’s parameters and therefore the
emerging reinforcement learning algorithm56.

The network architecture of RL2 and RR-RL2 agents consisted of a gated-recurrent unit of size 12857 followed by two
linear layers that map hidden state-to-value function and policy respectively. The model implementations closely followed
the implementation of Binz and Schulz40. We used a variational dropout prior58 for RR-RL2 and assumed that the encoding
distribution factorizes into a set of independent normal distributions with learnable means and log-variances. Models were
trained using a standard actor-critic loss at the end of each episode59. We used the ADAM optimizer60 with a learning rate of
0.001 and trained for a total of 106 episodes with batches of size 32. RR-RL2 relied on a dual gradient ascent procedure to
enforce the constraint on the KL divergence61. We obtained gradients w.r.t. the parameters of the encoding distribution λ using
the reparametrization trick62. We trained RR-RL2 with description lengths between 10 and 10000 nats.

Modeling fitting and comparison
Bayesian models
The parameters of the Bayesian models were optimised endogenously for each participant, i.e., parameters of the model are
chosen to maximise the likelihood of the data observed so far as in Schulz and colleagues29. We feed in the choice taken and
reward received by participants from the previous trial and predict the expected reward and its uncertainty measure for all six
options for the given trial. Note that the predictions are made after each trial conditioned on all data points up to that trial in
the given task. The kernel parameters of these models are learned via gradient descent using the ADAM optimiser60 for 100
iterations. The initial prior noise of these models was set to 0.001.
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Following prior work63, 64, we use a variant of upper confidence bound sampling with an additional stickiness component as
an action selection policy for both Bayesian models:

z(at |β ,τ,λ ) = β µ(at)+ τσ(at)+λδ (at ,at−1) (18)

where δ (at ,at−1) takes the value of 1 if at = at−1 and 0 otherwise. This formulation includes uncertainty estimates for the
learned values as an additional term to guide exploration. It has been shown to capture human behaviour well in function
learning tasks28, 64 and also comes with performance guarantees65.

The policy pBayesian(at |β ,τ,λ ) is then derived from these values using the softmax function:

pBayesian(i) =
ez(at )

∑
K
j=1 ez(at )

f or at = 0,1, . . . ,5 (19)

The free parameters β ,τ , and λ were fitted to human choices using a Bayesian model fitting procedure for each participant
separately with the priors for parameters set to N (0,5). Model fitting was performed using the probabilistic programming
toolbox PYMC366. We used the marginal likelihood on the first trial of the compositional sub-task for model comparisons.

Meta-reinforcement learning
For modelling human choices, we assumed a mixture policy of the policy provided by the meta-reinforcement learning agent, a
random policy, and a stickiness term:

pRL2(at | ε,λ ) = (1− ε −λ )π (at | ht)+ ε|A |−1 +λδ (at ,at−1) (20)

pRR-RL2(at | ε,λ ,C) = (1− ε −λ )π (at | ht ,C)+ ε|A |−1 +λδ (at ,at−1) (21)

where C, ε and λ are free parameters, |A | denotes the number of available actions, and δ (at ,at−1) takes the value of 1
if at = at−1 and 0 otherwise. The marginal distribution π (at | ht) was approximated with 10 samples from the encoding
distribution.

We performed a grid search over the free parameters ε , λ and C and obtained a log-likelihood estimate for all pairs of
parameters. ε and λ could take values between 0 and 1 with increments of 0.02, subject to the constraint that their sum is less
than or equal to 1. The description length C could take values from 10 to 10,000 in steps of 10. We assumed a uniform prior
probability over these discretized parameter values, which allows us to compute the marginal log-likelihood for the first trial of
the compositional sub-task as follows:

log∑
ε

∑
λ

∑
C

exp

(
N

∑
n=1

pRR-RL2(a11,n,i | ε,λ ,C)

)
− log(NC ·Nε ·Nλ ) (22)

where NC, Nε , and Nλ correspond to the number of considered values for each parameter.

Model comparison
To obtain a quantitative measure of the goodness-of-fit to human choices, we conducted a Bayesian model comparison of
all previously outlined models. We provide the full list of fitted parameters for each model in the SI. We measured the fit to
human choices based on two metrics: posterior model frequency and exceedance probability41. The posterior model frequency
measures how often a model offers the best explanation in the population, while the exceedance probability measures how
likely it is that a given model is the most frequent explanation. We compute the metrics for model comparison using a Python
implementation of the Variational Bayesian Analysis (VBA) toolbox [URL]. The toolbox requires us to provide log evidence –
the marginal log-likelihood from the model fitting procedure in our case – for each model and participant, which we compute as
previously described. For further details about this model comparison procedure see Rigoux and colleagues41.
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