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Humans possess the ability to identify and general-
ize relevant features of natural objects, which aids
them in various situations. To investigate this phe-
nomenon and determine the most effective repre-
sentations for predicting human behavior, we con-
ducted two experiments involving category learning
and reward learning. Our experiments used realis-
tic images as stimuli, and participants were tasked
with making accurate decisions based on novel
stimuli for all trials, thereby necessitating general-
ization. In both tasks, the underlying rules were
generated as simple linear functions using stimulus
dimensions extracted from human similarity judg-
ments. Notably, participants successfully identi-
fied the relevant stimulus features within a few tri-
als, demonstrating effective generalization. We per-
formed an extensive model comparison, evaluat-
ing the trial-by-trial predictive accuracy of diverse
deep learning models’ representations of human
choices. Intriguingly, representations from mod-
els trained on both text and image data consis-
tently outperformed models trained solely on im-
ages, even surpassing models using the features
that generated the task itself. These findings sug-
gest that language-aligned visual representations
possess sufficient richness to describe human gen-
eralization in naturalistic settings and emphasize
the role of language in shaping human cognition.
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Introduction
Generalization is a notoriously difficult challenge. Es-
pecially in realistic environments, where there are in-
finitely many different features to describe objects, ex-
tracting the dimensions that matter becomes difficult.
Nonetheless, humans and other animals can general-
ize efficiently from experience to novel situations, and
adapt their representations to the task at hand. Con-
sider an apple, as an example. There can be many
features describing an apple such as its color, taste,

shape, or brand. People can use these features and
make predictions about how tasteful that apple could
be, the environmental impacts of growing it, or the sig-
nificance of it in different mythological and religious set-
tings. How can we describe this kind of generalization
behavior across realistic stimuli? And which represen-
tations underlie this ability in the first place?
One way to adapt sensory representations to different
situations is to learn functions over them. Cognitive psy-
chologists have studied how people learn these func-
tions using simple learning paradigms. In these tasks,
participants are repeatedly shown abstract stimuli, such
as geometric objects of different colors and shapes, and
they are instructed to learn what kind of objects are
more rewarding or belong to a certain category through
feedback (3–5). This approach has been fruitful for un-
derstanding the kinds of learning strategies people use,
such as rule-based learning (6), similarity-based learn-
ing (7), or heuristics strategies (8). However, some im-
portant aspects of real-life learning have been ignored
in these tasks. First, in real-life, associations are of-
ten not learned purely through repeated trial-error, but
generalizing to novel situations is needed (9). Second,
in this line of work, how to represent the stimuli has
largely been ignored, given that stimuli are simple and
are therefore easy to represent. Therefore, how well hu-
mans can generalize in learning tasks that involve natu-
ralistic stimuli and how humans represent these stimuli
in the first place remains unknown.
To address these gaps, we designed a category learn-
ing and a reward learning task. These two tasks did
not involve any repeating stimuli, requiring generaliza-
tion for any successful decision. Additionally, we used
naturalistic images, which include features humans ac-
quired throughout their lifespans. Naturalistic stimuli are
high dimensional (10), and it may be challenging to as-
sign credit to the relevant stimulus dimension. We used
these rich naturalistic tasks to study whether and how
fast humans can discover the relevant stimulus features
from limited experience and exploit this knowledge for
novel decisions.
To test how people represent naturalistic stimuli, we
turn to deep neural networks (DNNs). Across vari-
ous domains of cognitive science, these models have
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Figure 1. Task descriptions. (A) An example trial from the category learning task, where an incorrect decision is made. (B) An example trial from the reward learning
task where the best option is chosen and highlighted in orange. (C) Examples of where different images fall in the three features of the embedding used to generate
the task and how these features relate to category membership and associated rewards in our tasks. The feature labels are those used by (1) who constructed the
embedding. The original images are replaced with copyright-free alternatives from the THINGSplus database (2).

been successful in predicting behavior and neural data
in response to naturalistic stimuli. For example, when
prompted with the same images, the representational
hierarchy of DNNs have shown to be similar to that of
the ventral visual stream in primates (11, 12). These
models have also been shown to behave similarly to
humans in categorization tasks (13, 14). In the audi-
tory domain, similar hierarchical correspondence of rep-
resentations have been found between DNNs and the
auditory hierarchy in the human brain (15). Moving up
to higher cognition, it has been shown that representa-
tions of large language models can predict brain activity
in response to natural language as well as human read-
ing times (16). Whether and what kind of DNN repre-
sentations can be useful for predicting human behavior
in high-dimensional learning tasks that require general-
ization remains untested.

The stimuli in our category and reward learning tasks
were sampled from the THINGS database (10). To as-
sign rewards and category membership to these im-
ages, we constructed sparse linear functions over an
embedding built to capture human similarity judgment
of the THINGS stimuli (1). Participants were exposed
to a novel stimulus on each trial and could therefore not
solve the task by associating specific stimuli with spe-
cific outcomes. Instead, they had to apply their knowl-
edge about regularities between the stimuli they had
seen already to solve the task efficiently by means of
generalization. We found that humans learned to do
this surprisingly quickly, suggesting that they could iden-
tify relevant stimulus dimensions within just a few tri-
als and use this knowledge to guide choices. To un-
derstand the nature of the representations participants
used when solving this task, we first extracted repre-
sentations from DNNs of various architectures that were
trained under different regimes and different modalities
of data. Then, we trained linear models over these
representations to predict humans’ learning trajecto-

ries. While all DNN representations could predict hu-
man behavior, language-aligned visual representations
were consistently better at predicting human choices
than their uni-modal counterparts. Our modeling results
show that human learning can be modeled using sim-
ple strategies when provided with sufficiently rich repre-
sentations and that DNNs trained on multi-modal data
can provide these rich representations. Taken together,
our paradigm and behavioral results pave the way to
a deeper understanding of representational structure in
the human mind.

Results
Category Learning
Human participants (n = 91) completed 120 trials of
an online category learning task, where they were pre-
sented with a novel image in each trial. They were
asked to deliver these images to one of two dinosaurs,
Julty or Folty, using key presses. Participants were told
that the two dinosaurs had completely non-overlapping
preferences for what gifts they enjoyed. After each trial,
we gave participants feedback on whether their choice
of delivery was correct. An example trial from the task
is shown in Fig. 1A.
Participants were assigned to one of three conditions,
where in each condition the category boundary was de-
pendent on a different rule. These rules depended on
a feature of an embedding that reflected human similar-
ity judgments on the THINGS database images (1, 10).
Specifically, the authors built an embedding to predict
human choices in an odd-one-out task and found that
an embedding with 49 human interpretable features de-
scribed human choices the best. The three chosen fea-
tures were those that explained the most variance in the
embedding and are displayed in Fig. 1C. For each par-
ticipant, 120 unique stimuli from the THINGS database
were sampled. A median split over the assigned feature
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Figure 2. Category learning results. (A) Participants’ performance across trials. Shaded lines indicate 95% confidence intervals. (B) Coefficient values from the
mixed-effects logistic regression analysis to predict participant choice. Error bars indicate standard errors. (C) Performance of the computational models. For each
category, we show the learning trajectory of the model predicting participant behavior the best. The curves are smoothed every 10th trial. (D) Cross-validated negative
log likelihoods of each representation. Lower values indicate better fits to human behavior. The dashed horizontal line indicates chance level performance.

of the sampled stimuli determined the category bound-
ary.

We analyzed participants’ behavior (Fig. 2A), us-
ing mixed-effects logistic regression. We predicted
whether a participant made the correct choice using the
trial number as a fixed effect. Additionally, we fitted
participant-specific random intercepts, as well as ran-
dom slopes for the trial number and the assigned ex-
perimental condition of participants. We found that par-
ticipants performed the task above chance level (β̂ =
1.14 ± 0.09, z = 13.18, P < .001) and that their perfor-
mance improved over trials (β̂ = 0.32 ± 0.05, z = 6.89,
P < .001), indicating a learning effect (Fig. 2B). This
suggests that humans can very efficiently extract the
relevant feature dimension in high-dimensional natural-
istic environments despite seeing each individual stimu-
lus only once. To characterize how quickly participants
learn the task, we compared the accuracy of partici-

pants at each trial against chance level using a one-
sided one-sample t-test. We found that participants per-
formed above chance level starting from trial number 7,
t(90) = 2.25, p = .01. See the Supplementary Informa-
tion for details of testing and Fig. S1 for the results for
all trials.

To gain an understanding of the representation that was
guiding choices in this task, we assessed what kind of
deep neural network representations can best describe
humans’ choices in our task. We tested representations
from 48 different models in addition to the task embed-
ding (17–38). The models were trained on either text,
images, or the two combined in order to solve com-
mon machine learning tasks such as text-generation,
text-representation, or image-recognition. For the mod-
els that were trained on image data, we make the ad-
ditional distinction between self-supervised and super-
vised learning paradigms. This is because they are
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shown to learn different representations even when they
share the same architecture (39). In order to extract rep-
resentations from models trained on image and multi-
modal data, we provided the images used in the task to
these models. To extract representations from models
trained on text, we provided them with the prompt This
is the image of a X, where X was the category la-
bel of the task images. We trained logistic regression
models in a sequential manner on the different repre-
sentations and used the predictions of these models to
model participants’ choices (see Methods for details on
representation extraction and modeling). The simulated
behavior of these models is shown in Fig. 2C.
First, we observed that all the representations we tested
can do our task and predict human behavior above
chance level. This is remarkable given that these repre-
sentations were obtained through training regimes that
were independent of our task, and the semantic rep-
resentations we used to generate the task were un-
known to the other representations. Additionally, we
found that 7 of the 48 candidate representations de-
scribed participant behavior better than representations
used to generate the task. Of these 7 representations,
one was a large vision transformer, trained in a super-
vised manner. The other 6 were different variants of
a self-supervised model, Contrastive Language-Image
Pre-training (CLIP) (17), that was trained to represent
pairs of images and text as similarly as possible. We
saw that regardless of encoder architecture choice, this
multi-modal training regime produced representations
describing human choices in our task exceptionally well.
The rest of the supervised and self-supervised vision
models, as well as the language models, had a hetero-
geneous distribution in how well they predicted human
behavior, as visualized in Fig. 2D. The descriptions of
the models we extracted representations from are avail-
able in the Supplementary Information.

Reward Learning
To test whether our behavioral and modeling findings
can generalize across learning tasks, we designed a
second learning task. In our second task, human partic-
ipants (n = 82) completed 60 trials of a reward learning
paradigm, in which they were asked to maximize their
accumulated reward over the course of the task. In each
trial, participants were presented with two images and
were asked to select one using key presses. After mak-
ing a choice, the associated reward with each option
was shown. An example trial from the task is shown in
Fig. 1B.
Participants were assigned to one of the three condi-
tions as in the category learning task. Stimuli were sam-
pled in the same way as the category learning task. For
each participant, the values of the task-relevant feature
were re-scaled linearly between 0 and 100.
We again analyzed participants’ behavior (Fig. 3A)
using mixed-effects logistic regression. We predicted
whether a participant chose the image on the right us-

ing the reward difference between the two options, the
trial number, and the interaction of the two terms as
fixed effects. We additionally fitted participant-specific
random slopes for these terms and for the assigned
experimental condition of participants. We found that
participants used the reward difference between the op-
tions (β̂ = 0.89 ± 0.07, z = 12.56, P < .001). While the
trial number did not predict which option the participants
chose (β̂ = 0.002±0.03, z = 0.09, P = .93), the interac-
tion of the two terms revealed that participants used the
reward differences between the options more effectively
over trials (β̂ = 0.34±0.04, z = 9.30, P < .001; Fig. 3B).
These results suggest that the generalization effect we
found in the category-learning task transfers to other
naturalistic learning tasks as well. To test how quickly
participants learn the task, we compared the accuracy
of participants at each trial against chance level using a
one-sided one-sample t-test. We found that participants
performed above chance level starting from trial number
6, t(81) = 3.01, p = .002. See the Supplementary Infor-
mation for details of testing and Fig. S1 for the results
for all trials.
The same representations extracted for the category
learning task were used in the reward learning task. We
trained linear regression models (again in a sequen-
tial manner) on the observations of the participants to
predict the associated reward with novel images. We
then regressed the reward estimates of the linear mod-
els onto participant choice in a mixed-effects logistic re-
gression model (see Materials and Methods for details),
whose simulated behavior is shown in Fig. 3C.
The modeling results for this task were similar to those
of the category learning task. All the models de-
scribed participant behavior above chance level. Again,
7 models, a large vision transformer, and all variants
of CLIP predicted participant behavior better than the
task features, and we observed heterogeneity in how
well language models, supervised vision models, and
self-supervised vision models predicted human behav-
ior. The complete modeling results are shown in Fig.
3D.

Representational Similarity Analyses
Our modeling results showed that CLIP representations
are robustly better than their uni-modal counterparts in
describing human behavior, suggesting that they cap-
ture essential features of object representations. As the
next step, we studied what makes these representations
particularly successful. To get a better understand-
ing of these results, we conducted two representational
similarity analyses (RSA) (40) where we investigated
the representations for all the images in the THINGS
database. First, we computed Centered Kernel Align-
ment (CKA) (41) using a linear kernel between the task
embedding and every representation we tested. While a
CKA score of 0 indicates maximal dissimilarity between
representations, a score of 1 indicates maximal similar-
ity. We found that all of the 6 different CLIP representa-
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Figure 3. Reward learning results. (A) Participants’ performance across trials. Shaded lines indicate 95% confidence intervals. (B) Coefficient values from the
mixed-effects logistic regression analysis to predict participant choice. Error bars indicate standard errors. (C) Performance of the computational models. For each
category, we show the learning trajectory of the model predicting participant behavior the best. The curves are smoothed every 5th trial.(D) Cross-validated negative
log likelihoods of each representation. Lower values indicate a better fit for human behavior. The dashed horizontal line indicates chance level performance.

tions are more similar to the embedding that was used
to generate the task than any other representation we
tested (CKA = 0.61 ± .008) (see Fig. 4A for the full
comparison). This similarity shows they provide a good
representational basis to arrive at meaningful solutions
in our tasks.

Does the high similarity between the CLIP representa-
tions and the task embedding mean that the CLIP is
simply a good enough approximation of the task em-
bedding, or are there also meaningful differences be-
tween the two? To answer this question, we calcu-
lated the CKA between CLIP representations and every
other representation, as well as the CKA between the
task embedding and every representation except CLIP.
Then, we subtracted CKA values for CLIP from those
for the task embedding. Here, while a positive value
would indicate a representation being more similar to
the task embedding than it is to CLIP representations,

a negative value would indicate an opposite relation-
ship. We found a clear pattern, where language rep-
resentations were consistently more similar to the task
embedding than they were to CLIP representations. On
the contrary, visual representations were more similar
to CLIP representations than they were to the task em-
bedding (Fig. 4B). These findings show that in addition
to the high similarity between the task embedding and
the CLIP representations, there is a meaningful differ-
ence that CLIP representations are better aligned with
visual representations. This difference plays an impor-
tant role in predicting participant behavior. To provide
better intuition for the differences between the two mod-
els and the better predictive accuracy of CLIP models,
we show example trials from the last 30 trials of the re-
ward learning task in Fig. 5. In these trials, participants
and models trained on CLIP representations made the
same decision that differed from the decision of models
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Figure 4. Representational similarity analyses (RSA). (A) Linear Centered Kernel Alignment (CKA) similarity between the task embedding and every representation
tested. (B) Difference between the CKA of the task embedding and tested representations to the CKA of the CLIP representations and the other tested representations.
Individual points indicate values for different CLIP representations. Error bars indicate 95% confidence intervals.

trained on the task embedding. These examples illus-
trate how CLIP representations can capture human in-
tuition in decisions where the task embedding failed to
do so. We ruled out other alternative explanations to our
findings such as the type of learning algorithm used and
the size of the representational space in extra analyses
as shown in Fig. S2, Fig. S3, and Fig. S4.

Discussion
We developed novel category learning and reward
learning tasks to test people’s abilities to generalize in
high-dimensional spaces. The tasks required partici-
pants to identify relevant stimulus dimensions from feed-
back and use this knowledge to make correct subse-
quent decisions. Previous work has shown that humans
can exploit relational structure for guiding choice in low
dimensional physical spaces (5). Here, we observed
that humans can exploit much higher dimensional ab-
stract relational structures to make decisions. Further-
more, participants did not require any repetition of the

stimuli to generalize effectively.
We believe that the basis of this behavior lies within
rich and expressive sensory representations. Over such
representations, simple function learning mechanisms
can identify relevant stimulus features. We trained linear
models over several DNN representations to test what
kind of DNN representations contain this richness and
can predict human behavior. All 48 representations we
tested predicted human behavior above chance level.
Previous work has shown that DNN representations can
predict human similarity judgments (42), performance in
psychophysical tasks (43), and visual selectivity tasks
(44). This line of work has been generalized to the au-
ditory domain (45), as well as to language (16). We ex-
tended this literature by showing that DNN representa-
tions can predict human decisions in naturalistic learn-
ing tasks. We find it surprising that these representa-
tions can reveal task-relevant, semantically meaningful
stimulus features after a few observations. First, be-
cause most of these representations contain thousands
of features and learning which ones are relevant over
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71 76 44 48 87 64

Metal/Artificial/Hard

Food-related/Eating-related/Kitchen-related

Animal-related/Organic

65 76 62 4964 44

30 72 46 23 32 24

Figure 5. Example trials showing the similarity be-
tween CLIP and human decisions that show dis-
agreement with the task embedding. Each row
shows three trials from a different condition. Or-
ange highlighted text shows the option chosen
by all CLIP models and the human participant,
whereas grey text shows the decision made by
the task embedding. As the tasks were generated
using the task embedding, all the choices shown
here made by CLIP and humans are sub-optimal.
Shown examples are from the second half of the
task, as to eliminate the learning process as a
confound. The original images are replaced with
copyright-free alternatives from the THINGSplus
database (2).

a few observations is a challenging learning problem.
Second, it was unexpected that DNNs contained infor-
mation about the tasks’ generative features since they
were trained on objectives independent of our experi-
mental tasks.
Another interesting finding was the predictive success of
the multi-modal representations we tested. As our tasks
only used images, visual representations alone should
be sufficient to solve these tasks. However, models
trained on text and image data combined consistently
outperformed vision-only and text-only models. Further-
more, multi-modal representations predicted participant
behavior even better than the generative features of the
task. We believe the multi-modal representations pre-
dicted behavior better than the generative task features
because of the way in which the generative features
were derived. An unsupervised similarity judgment was
used to generate the task features, which does not re-
quire as fine-grained consideration as our tasks did. Ad-
ditionally, our RSA results showed that multi-modal rep-
resentations were better aligned with visual representa-
tions than the generative task features. These results
together indicate that grounding in visual information is
necessary but insufficient. We conclude that aligning
visual representations with language gives rise to rich
representations. These representations can then be
adapted to generalize in naturalistic learning tasks as
humans can. The success of the multi-modal represen-
tations offers novel evidence for the importance of lan-
guage in shaping cognition, which has previously been
shown through other methods (46–49).
An additional important takeaway from our findings is
that simple learning strategies can be very effective
when modeling human learning in naturalistic cognitive
tasks. It has been shown in previous work that linear
learning strategies can successfully predict participant
behavior in learning tasks that use simple stimuli (4, 50).
We showed that the same strategies can generalize to
higher dimensional settings as well, indicating that sim-
ple learning strategies can be effective in naturalistic
settings too.
Our findings have implications both for cognitive psy-

chology and for computer science. By showing that
people can do learning tasks with naturalistic stimuli
and that we can model these processes, our findings
create the opportunity to study exploration-exploitation
(51), contextual learning (52), and learning functions of
different structures (53) in more naturalistic settings. In
computer science, the attempt to build models aligned
with humans has been increasing (34, 44, 54, 55). Our
tasks and modeling approach offer a new way to mea-
sure the human alignment of DNN representations and
to use this as a metric while building human-aligned
DNNs. Previous work in this domain has focused either
strictly on psychophysical tasks (43, 56) or on similarity
judgments between stimuli (42, 57). We suggest that
representations should not only be aligned at these lev-
els but also translate to higher-level cognition, as mea-
sured by our tasks. Alignment at this level can pave
the way for artificial systems that can generalize across
semantically rich tasks, making them more robust and
powerful.

Our work on understanding human representations in
cognitive psychology tasks can be extended in multi-
ple ways. First, we have only tested two paradigms
and focused on learning problems. Within the learn-
ing paradigms, the same approach can be used to test
whether these representations can predict human be-
havior when task rules are determined through non-
linear functions over the embedding. Moving beyond
learning paradigms, our approach can be used to test
and model other cognitive functions such as memory,
attention, and inhibition control among others. Sec-
ond, we have focused on learning from visual obser-
vations. Future work can provide participants with text
descriptions instead of images and test whether multi-
modal representations are still needed to predict behav-
ior or whether text-based representations are sufficient
if there are no images. Lastly, in our modeling work, we
have considered models of different architectures, dif-
ferent modalities of training data, and different regimes.
However, we have not considered the effect of different
learning rules DNNs use on the representations. This is
a factor that can be investigated in future work.
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Previous work has investigated decision-making in nat-
uralistic settings, such as purchasing decisions and rat-
ings of goods. These studies have improved our un-
derstanding of various questions such as how to ex-
plore in the real world (58) and how to represent tabular
data (59). We extend our understanding of naturalis-
tic decision-making, by showing that people can quickly
adapt the relational knowledge they have about natural
objects. This allows them to learn very quickly in nat-
uralistic learning tasks and generalize effectively. We
also show that DNNs are powerful tools for modeling
the structure of these representations. This could open
up the door for a whole new cognitive psychology that
uses naturalistic tasks and environments and thereby
increase the validity of the cognitive sciences more gen-
erally.

Methods
Participants
For the category learning task, we recruited 98 par-
ticipants (48 females, 50 males, mean age= 28.92y,
SD= 7.32) on the Prolific platform. Participants with
less than 50% accuracy were excluded from the anal-
yses, leaving us with 91 participants. A base payment
of £ 1.50 was made, and participants could earn an ad-
ditional bonus of £ 6.00. The median completion time
was 12 minutes and 38 seconds. The inclusion crite-
ria included having a minimum approval rate of 97%,
and a minimum number of 15 previous submissions on
Prolific. Participation in the reward learning study was
an exclusion criterion. For the reward learning task,
99 participants were recruited (49 females, 49 males,
1 other, mean age = 27.9 y, SD = 9.13). After applying
the 50% accuracy criteria, we were left with 82 partic-
ipants. A base payment of £ 2.00 was made, and an
additional performance-dependent bonus of £4.00 was
offered. The median completion time was 9 minutes
and 26 seconds. The inclusion criteria included hav-
ing a minimum approval rate of 95%, and a minimum
number of 10 previous submissions on Prolific. All par-
ticipants agreed to their anonymized data being used for
research. The study was approved by the ethics com-
mittee of the medical faculty of the University of Tübin-
gen (number 701/2020BO). Participants gave consent
for their data to be anonymously analyzed by agreeing
to a data protection sheet approved by the data pro-
tection officer of the MPG (Datenschutzbeauftragte der
MPG, Max-Planck-Gesellschaft zur Förderung der Wis-
senschaften).

Tasks and Stimuli
Both tasks were run online in forced full-screen mode.
Participants were shown written instructions and were
asked to complete comprehension check questions be-
fore they could start the tasks. In both tasks, partic-
ipants were given unlimited time to make decisions.
In the category learning task, binary (correct versus

wrong) feedback was given for 2s. In the reward learn-
ing task, the associated reward with the stimuli was
shown for 1.5s, and there was an inter-trial interval
of 1s where participants were shown a blank screen.
Throughout both tasks, the estimated total payment of
participants was shown on the upper part of the screen.
At the end of the tasks, participants were asked whether
they think their data should be used for analysis. Across
both tasks, all but one participant responded saying
their data should be analyzed, whose data was any-
way excluded due to poor performance. The cate-
gory learning task was programmed using jsPsych (60),
whereas the reward learning task was programmed in
plain JavaScript.
For each participant, 120 stimuli were sampled indepen-
dently from the THINGS database. Because the load-
ings of the features were not uniformly distributed, we
made 5 equally sized bins of the loadings for the as-
signed feature and sampled object categories uniformly
from these bins. From these object categories, the spe-
cific images were assigned randomly. For details on the
used features and the embedding, see Hebart et al. (1).

Extracting Representations
All the visual and multi-modal models were given the
task images as inputs. The representations were ex-
tracted from the penultimate layer if the models had a
classification layer, and from the final layer otherwise.
For the vision transformer (ViT) models, the [class]
token representations were extracted. We used the
THINGSVision (39) toolbox for the steps above.
To extract representations from language models,
we provided them with the prompt A photo of a X
where X was the category label of the task image. fast-
Text was only provided with the category label instead.
ada-002 and fastText provided representations as out-
puts, whereas from the other models, we extracted the
[class] token representations. All the resulting repre-
sentational matrices had different observations as rows
and different features as columns.

Modeling
To model participants’ learning trajectories, we trained
linear models on the different representations sepa-
rately. The models were conditioned on the observa-
tions X made until trial t − 1 , and outputted estimates
for the novel observation x on trial t. For both tasks,
we report results from L2 regularised models because
overall they provided the best fit for human data. See
Fig. S2 for results from sparse linear models.
For the category learning task, we used the following
linear model to estimate the probability that a given ob-
servation x belonged to the category C = 1.

p(C = 1) = h(x) = 1
1+e−βT x

(1)

where β was estimated by minimising the loss:
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L = −
t−1∑

i

[yi logh(xi)+(1−yi) log(1−h(xi)]+α||β||2

(2)
The penalty term α was determined with grid search
to maximize the task performance of each model on a
participant basis. Up until observations from both cat-
egories were made, the models were conditioned on a
single uninformative pseudo-observation for each cat-
egory. We regressed the probability estimates of the
linear learning model onto participant choice using a
mixed-effects logistic regression model in order to es-
timate participants’ policies. The probability estimates
were the only fixed and random predictors used. The
negative log likelihoods were obtained through leave-
one-trial-out cross-validation, where each choice in the
task served once as the test set.
For the reward learning task, we modeled data using a
probabilistic linear model with centered spherical Gaus-
sian priors over model weights, scaled by λ. The reward
estimate r̂ was computed as follows:

r̂(x) =
(

σ−2
(

σ−2XT X+λI
)−1

XT r
)T

x (3)

where λ and observation noise σ were fitted to max-
imize the log marginal likelihood of the task perfor-
mance. We then regressed the reward estimate differ-
ences between the left and the right options onto partic-
ipant choice. This was the only fixed and random pre-
dictor in the model. For all learning models and mixed-
effects models, we centered the training data and di-
vided it by its standard deviation, and we applied the
same scaling parameters to the test data. The learn-
ing models were constructed using scikit-learn (61),
and the mixed-effects models were fitted using lme4
(62).

RSA

We calculated pairwise similarities between different
representations. First, the representations were mean-
centered. Then, the linear CKA between two represen-
tations A and B was calculated as follows:

CKA(A,B) =
||BT A||2F

||AT A||F ||BT B||F
(4)

where || · ||F denotes the Frobenius norm.

Data, Materials, and Software Availability

The code for the current study is available through
the GitHub repository https://github.com/
candemircan/NaturalCogSci. The data are
available on the OSF from the following link:
https://osf.io/h3t52/.
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Supplementary Information

Behavioral Analyses
Testing How Fast Participants Learn

For each trial in each task, we conducted a one-sided 1 sample t-test of choice accuracy against chance level
performance. The results from these analyses are displayed in Fig. S1.

Alternative Learning Models
For each task, we tested two extra sets of learning models. Overall, we found that the models reported in the
main text describe participant behavior the best. See Table 1 for a comparison of all learning models for each
representation.

Sparse Models

In the main text, we reported results from L2 regularised learning models. In addition to that, we tested sparse linear
models. For the category learning task, this was simply done by changing the penalty term to consider the L1 norm
in the loss function:

L = −
t−1∑

i

[yi logh(xi)+(1−yi) log(1−h(xi)]+α||β||1 (S1)

For the reward learning task, the prior over the weights was set differently from the model described in the main text.
Here, instead of using a spherical Gaussian, each weight’s prior had a different standard deviation. The standard
deviations over the weights’ priors and observation noise were estimated using evidence maximization (63). The
results from sparse models are shown in Fig S2.

PCA Models

Different representations we tested had different numbers of features. To mitigate any negative effect of the number
of features on model performance, we trained our linear models on Principal Component Analysis (PCA) transformed
representations. For each representation and each participant. we took the first 49 principal components over all the
images shown to the participant. We selected a 49 dimensional space because it matches the size of the embedding
used to generate the task. Then, we trained our linear models on these representations as described in the main
text. The results from these analyses are shown in Fig S3. Overall, these models do not perform better than those
trained on the original representations.

The Effect of Number of Features
In addition to the PCA analysis described above, we tested whether the number of features had an effect on how
well they described participant behavior through a correlation analysis. We found no significant correlation between
the number of features and the sum of the negative log likelihoods across the two tasks (τb = .19,p = .07).

Model Descriptions
Below, we briefly describe all the neural networks from which we extracted representations. For more detailed
descriptions, see the original associated work.

Task Embedding (1)

This is a representational embedding that describes the images in the THINGS database (10). The authors of
the model first presented human participants with an unsupervised task where they were asked to choose the odd
image in a triplet. Then, they built a model to predict human choice in this task. The objects are provided as one-hot
vectors, and the model learns to project them into a latent space to predict participant choice. The authors found
that the objects could be described in a 49 dimensional latent space, and they verified that these were semantically
meaningful dimensions through further experiments.
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ViT (18)
Vision transformer (ViT) is a model that applies the Transformer architecture used in language models such as
BERT (23) to image recognition (64). Images are initially divided into multiple 2D patches. These patches and their
positions are linearly embedded in a latent space. Additionally, a [class] embedding is learned to represent the
entire image. The sequence of these embeddings is passed through a Transformer encoder. The model learns a
linear mapping from the output of the Transformer encoder for the [class] embedding to the object categories. The
models we used were trained on ImageNet 1k (65). We tested three 3 variants of ViT that differed in size. This
architecture is also used in some CLIP and Harmonization models.

ResNet (22)
ResNet is a type of convolutional neural network. In addition to a standard convolutional architecture, it introduces
residual connections. These extra connections propagate the forward signal by skipping convolutional layers in
between, allowing to train networks deeper than what was possible before. The models we used were trained on
ImageNet 1k. We tested 5 different variants of ResNet that differed in size. This architecture is also used in some
CLIP, and Harmonization models, as well as all the self-supervised models we tested.

Swin (28)
Swin is a type of Transformer used for vision tasks. It introduces hierarchical feature maps that increase in resolution
through the network’s layers. Additionally, the attention windows are shifted from one transformer block to the next,
in order to provide connections between the separate windows of the previous layer. The models we used were
trained on ImageNet 1k. We tested 3 different variants of Swin that differed in size.

ConvNeXt (26)
ConvNeXt is a recent convolutional neural network variant. It introduces a better FLOPs/accuracy trade-off compared
to a ResNet by using depthwise convolution. The model uses an inverted bottleneck, where block sizes initially
get larger and then smaller, and applies convolution over larger distances. In addition to these major changes,
ReLU activation functions are replaced with GERU, and batch normalization is replaced by layer normalization. The
models we used were trained on ImageNet 1k. We tested 4 different variants of ConvNeXt that differed in size. This
architecture is also used by one of the Harmonization models.

CORnet (29)
CORnet is a deep neural network model of the primate ventral visual stream. It explicitly models the areas V1,
V2, V4, and IT by assuming identical circuitry of varying sizes. CORnet-Z uses single convolution, followed by a
ReLU activation and max pooling. CORnet-R additionally introduces recurrent connections in a biologically plausible
manner. CORnet-S builds on top of CORnet-R by adding residual feedforward connections as seen in ResNet.
These models were trained on ImageNet-1k.

Harmonization (34)
This is a family of vision models that aligns deep neural networks with human vision. In addition to the standard
supervised training, the models are trained to use the same visual features of images that humans do. Roughly,
the second part is achieved by aligning a function of the networks’ salience maps with feature importance maps
obtained from human judgment. This results in networks that perform better in ImageNet and that are aligned with
humans. These models were trained on ImageNet-1k, as well as the ClickMe dataset (66). We tested 6 different
architectures trained under this regime, as provided by the authors of the original work. These networks included
various convolutional neural networks and transformers.

DINO (24)
DINO is a self-supervised vision model. The training setup includes a Student network and a Teacher network. Both
networks are provided by augmented images from ImageNet-1k. While the Teacher is provided with Global views,
the Student is only provided with Local views. The Student learns to use the local vies to predict the global features,
which are extracted from the Teacher network. The Teacher is a network whose weights are an exponentially
weighted average of the Student network. We used the ResNet-50 architecture for this model.

SwAV (37)
SwAV is a type of self-supervised learning that combines clustering and contrastive learning in an efficient way via
online learning. Two augmented versions of an image are passed through an encoder network. Using prototype
vectors, these latent representations are mapped onto "codes". The network is trained to predict the code of one
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augmented image from the other augmented image’s latent representation. The model we used had a ResNet-50
architecture and was trained on ImageNet-1k.

PIRL (36)
PIRL is a self-supervised learning recipe that promotes transformation invariant representation learning of images.
In this approach, a neural network is trained to maximize the similarity of the latent representation of an image and
the latent representations of the augmented versions of that image. Additionally, the model keeps a memory bank
and learns to make the latent representation of a given image less similar to those of other images in the memory
bank, while keeping it similar to the previous latent representation found in the memory bank. The model we used
had a ResNet-50 architecture and was trained on ImageNet-1k.

SimCLR (38)
In the SimCLR framework, two different sets of transformations are applied to a batch of images. These images are
passed through an encoder network to form latent representations. The network learns to maximize the similarity of
the augmented images’ latent representations that come from the same original image while minimizing the similarity
to those that originate from different images. The model we used had a ResNet-50 architecture and was trained on
ImageNet-1k.

VicReg (32)
VicReg is another self-supervised learning method used for vision. Here, the encoder network is given two different
views of an image. The goal is to minimize the distance between the embedding vectors while keeping the standard
deviation of each variable above a threshold and pushing the covariance between the embedding variables toward
zero. The model we used had a ResNet-50 architecture and was trained on ImageNet-1k.

Barlow Twins (31)
Barlow Twins passes two distorted versions of the same images through an encoder network to obtain latent rep-
resentations. In the latent space, it learns to make the cross-correlation matrix between the two groups of images
as close to an identity matrix as possible. This approach makes the representations of noisy variants of the same
image similar, while at the same time minimizing the redundancy between the two representations. The model we
used had a ResNet-50 architecture and was trained on ImageNet-1k.

MoCo v2 (25)
MoCo v2 is another setup for contrastive learning, which treats the encoder training as a dictionary look-up task.
Augmented mages are passed through an encoder network to obtain queries. In parallel, a momentum encoder
network is used to represent a dictionary of images, where the momentum encoder is a momentum-based updated
version of the encoder network. Here, the dictionary is maintained as a queue, where the representations of the
current mini-batch are enqueued. and the oldest ones are dequeued. The goal is to maximize the similarity of the
query representation to the key that has the lowest distance from the query while maximizing the dissimilarity to
the other keys. In this framework, the query and the current key that is most similar to the query are treated as
different augmentations of the same image. The model we used had a ResNet-50 architecture and was trained on
ImageNet-1k.

RotNet (30)
In the RotNet framework, rotated versions of images are passed through an encoder network. The rotation is
selected from a discrete set of rotations. Given an image, the goal of RotNet is to classify the degree of rotation
that has been applied to the image correctly. The model we used had a ResNet-50 architecture and was trained on
ImageNet-1k.

Jigsaw (27)
An early self-supervised learning approach is to teach neural networks to solve jigsaw puzzles. Here, images are
divided into a number of 2D tiles and are shuffled. Then, an encoder network learns tile-specific feature maps. Using
these local features, it rearranges the tiles in the correct order. The model we used had a ResNet-50 architecture
and was trained on ImageNet-1k.

CLIP (17)
CLIP is a multi-modal self-supervised learning framework. In this approach, two encoders are trained simultaneously,
one for images and the other one for text. The model is trained on text image pairs. The goal of the model is to
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predict the correct pairs of images and text, by learning a similar latent representation for the pairs using the two
encoders. At the same time, it learns to make the latent representations of incorrect pairs dissimilar. For the text
encoder, a Transformer architecture is used. For the image encoder, we tested both ResNet and ViT variants. CLIP
models we used were those provided by the original authors. The training data of the models are not fully specified,
however, it is reported in the original paper that the model is trained on 400 million image-text pairs.

Universal Sentence Encoder (20)
Universal Sentence Encoder is a language model that outputs vector representations for any text. The model uses
a deep averaging network, where the input word embeddings and bi-grams are initially averaged and later passed
through a feed-forward deep neural network. The model is trained on a range of natural language tasks. The training
data is not fully disclosed. However, it is reported to include text from Wikipedia, web news, web question-answer
pages and discussion forums.

BERT (23)
BERT is a pre-trained language model that uses a Transformer architecture. The model is given text as input, where
some part of the text is masked, and the model learns to predict the masked text, given the rest of the input, which
acts as context. An additional class token is added to the beginning of each input. The representations learned for
this token are used for downstream tasks such as classification. The model we used was trained on BookCorpus,
which is a dataset that consists of more than 10000 unpublished books, as well as English articles in Wikipedia.

DistilBERT (33)
DistilBERT is a distilled version of the BERT model, whose size is 40% and performance is 97% of the original model.
The model is trained through distillation, which uses a teacher-student framework. Here, the teacher is the original
BERT model. DistilBERT is trained with the objective to behave as similarly as possible to BERT, to predict masked
parts of the input given the rest of the context, and to generate hidden states that were as similar as possible to that
of the BERT model. The model we used was trained on the same data as BERT, described above.

RoBERTa (19)
RoBERTa is a replication of BERT, which documents the impacts of hyperparameter choice and training data size. It
outperforms BERT in multiple language tasks. The model we used was trained on a superset of the BERT’s training
data described above. Additional sources included CC-News, OpenWebText, and Stories.

ada-002 (35)
ada-002 is a text embedding model deployed by OpenAI. It is given text as input and generates a vector represen-
tation of the text. Unfortunately, details for this model are not available. However, it is believed to be one of the
encoding models that is available for GPT-3 (35).

fastText (21)
fastText is another model that uses word and sub-word level information to turn text into vector representations. We
used a skipgram version of this model, which was trained on 600 billion tokens extracted from Common Crawl. In
the skipgram framework, a word in a given sentence is masked. The model is trained to learn representations such
that when provided with the surrounding contextual words separately as input, it can predict the masked word.
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Figure S1. Participant Performance Against Chance Level at Each Trial. Trial-by-trial p-values from 1 sample t-tests testing
accuracy against chance level for (A) category learning task and the (B) reward learning task.
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Figure S2. Performance of the Sparse Learning Models. Cross-validated negative log-likelihoods for the (A) category learning
task and the (B) reward learning task are shown. Lower values indicate better fits to human behavior. The dashed horizontal line
indicates chance level performance.
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Figure S3. Performance of the Learning Models trained on PCA representations. Cross-validated negative log-likelihoods for the
(A) category learning task and the (B) reward learning task are shown. Lower values indicate better fits to human behavior. The
dashed horizontal line indicates chance level performance.
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