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Abstract

Short: Meta-learning has established itself as a promising tool for building models of

human cognition in the recent years. Yet, a coherent research program around

meta-learned models of cognition is still missing. The purpose of the present article is to

develop such a research program. We accomplish this by pointing out that meta-learning

can be used to construct Bayes-optimal learning algorithms, allowing us to draw strong

connections to the rational analysis of cognition. We then discuss several advantages of the

meta-learning framework over traditional Bayesian methods and reexamine prior work in

the context of these new insights.

Long: Meta-learning is a framework for learning learning algorithms through repeated

interactions with an environment as opposed to designing them by hand. In recent years,

this framework has established itself as a promising tool for building models of human

cognition. Yet, a coherent research program around meta-learned models of cognition is

still missing. The purpose of this article is to synthesize previous work in this field and

establish such a research program. We rely on three key pillars to accomplish this goal. We

first point out that meta-learning can be used to construct Bayes-optimal learning

algorithms. This result not only implies that any behavioral phenomenon that can be

explained by a Bayesian model can also be explained by a meta-learned model but also

allows us to draw strong connections to the rational analysis of cognition. We then discuss

several advantages of the meta-learning framework over traditional Bayesian methods. In

particular, we argue that meta-learning can be applied to situations where Bayesian

inference is impossible and that it enables us to make rational models of cognition more

realistic, either by incorporating limited computational resources or neuroscientific

knowledge. Finally, we reexamine prior studies from psychology and neuroscience that have

applied meta-learning and put them into the context of these new insights. In summary,

our work highlights that meta-learning considerably extends the scope of rational analysis

and thereby of cognitive theories more generally.
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Meta-Learned Models of Cognition

It is hard to imagine cognitive psychology and neuroscience without computational

models – they are invaluable tools to study, analyze, and understand the human mind.

Traditionally, such computational models have been hand-designed by expert researchers.

In a cognitive architecture, for instance, researchers provide a fixed set of structures and a

definition of how these structures interact with each other (Anderson, 2013b). In a

Bayesian model of cognition, researchers instead specify a prior and a likelihood function

which – in combination with Bayes’ rule – fully determine the model’s behavior

(L Griffiths, Kemp, & B Tenenbaum, 2008). The framework of meta-learning (Bengio,

Bengio, & Cloutier, 1991; Schmidhuber, 1987; Thrun & Pratt, 1998) offers a radically

different approach for constructing computational models by learning them through

repeated interactions with an environment instead of requiring an a priori specification

from a researcher.

Recently, psychologists have started to apply meta-learning to the study of human

learning (Griffiths et al., 2019). It has been shown that meta-learned models can capture a

wide range of empirically observed phenomena that could not be explained otherwise.

They, amongst others, reproduce human biases in probabilistic reasoning (Dasgupta,

Schulz, Tenenbaum, & Gershman, 2020), discover heuristic decision-making strategies used

by people (Binz, Gershman, Schulz, & Endres, 2022), and generalize compositionally on

complex language tasks in a human-like manner (Lake, 2019). The goal of the present

article is to develop a research program around meta-learned models of cognition and, in

doing so, offer a synthesis of previous work and outline new research directions.

To establish such a research program, we will make use of a recent result from the

machine learning community showing that meta-learning can be used to construct

Bayes-optimal learning algorithms (Mikulik, Delétang, et al., 2020; Ortega et al., 2019;

Rabinowitz, 2019). This correspondence is interesting from a psychological perspective

because it allows us to connect meta-learning to another already well-established
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framework: the rational analysis of cognition (Anderson, 2013a; Chater & Oaksford, 1999).

In a rational analysis, one first has to specify the goal of an agent along with a description

of the environment the agent interacts with. The Bayes-optimal solution for the task at

hand is then derived based on these assumptions and tested against empirical data. If

needed, assumptions are modified and the whole process is repeated. This approach for

constructing cognitive models has had a tremendous impact on psychology because it

explains “why cognition works, by viewing it as an approximation to ideal statistical

inference given the structure of natural tasks and environments” (Tenenbaum, 2021). The

observation that meta-learned models can implement Bayesian inference implies that a

meta-learned model can be used as a replacement for the corresponding Bayesian model in

a rational analysis and thus suggests that any behavioral phenomenon that can be

captured by a Bayesian model can also be captured by a meta-learned model.

We start our article by presenting a simplified version of an argument originally

formulated by Ortega et al. (2019) and thereby make their result accessible to a broader

audience. Having established that meta-learning produces models that can simulate

Bayesian inference, we go on to discuss what additional explanatory power the

meta-learning framework offers. After all, why should one not just stick to the

tried-and-tested Bayesian approach? We answer this question by providing four original

arguments in favor of the meta-learning framework (see Figure 1 for a visual synopsis):

1. Meta-learning can produce approximately optimal learning algorithms even if exact

Bayesian inference is computationally intractable.

2. Meta-learning can produce approximately optimal learning algorithms even if it is

not possible to phrase the corresponding inference problem in the first place.

3. Meta-learning makes it easy to manipulate a learning algorithm’s complexity and can

therefore be used to construct resource-rational models of learning.

4. Meta-learning allows us to integrate neuroscientific insights into the rational analysis
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Argument 3

Makes it easy to manipulate a learning al-
gorithm’s complexity.

Argument 1

Possible even if exact Bayesian inference
is computationally intractable.

Argument 2

Possible even if it is impossible to phrase
the corresponding inference problem.

Argument 4

Integrates neuroscientific insights into the
rational analysis of cognition.

p(H) =

p(D|H) =

?

?

p(H|D) =
p(H,D)

p(D)
p(H|D) =

p(H,D)

p(D)

Figure 1
Visual synopsis of the four different arguments for meta-learning over Bayesian inference
put forward in this article.

of cognition by incorporating these insights into model architectures.

The first two points highlight situations in which meta-learned models can be used

for rational analysis but traditional Bayesian models cannot. The latter two points provide

examples of how meta-learning enables us to make rational models of cognition more

realistic, either by incorporating limited computational resources or neuroscientific insights.

Taken together, these arguments showcase that meta-learning considerably extends the

scope of rational analysis and thereby of cognitive theories more generally.
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We will discuss each of these four points in detail and provide illustrations to

highlight their relevance. We then reexamine prior studies from psychology and

neuroscience that have applied meta-learning and put them into the context of our

newly-acquired insights. For each of the reviewed studies, we highlight how it relates to the

four presented arguments, and discuss why its findings could not have been obtained using

a classical Bayesian model. Following that, we describe under which conditions traditional

models are preferable to those obtained by meta-learning. We finish our article by

speculating what the future holds for meta-learning. Therein, we focus on how

meta-learning could be the key to building a domain-general model of human cognition.

1. Meta-Learned Rationality

The prefix meta- is generally used in a self-referential sense: a meta-rule is a rule

about rules, a meta-discussion is a discussion about discussions, and so forth.

Meta-learning, consequently, refers to learning about learning. We, therefore, need to first

establish a common definition of learning before covering meta-learning in more detail. For

the present article, we adopt the following definition from Mitchell (1997):

Definition: Learning

“For a given task, training experience, and performance measure, an algorithm is said

to learn if its performance at the task improves with experience.”

To illustrate this definition, consider the following example which we will return to

throughout the text: you are a biologist who has just discovered a new insect species and

now set yourself the task of predicting how large members of this species are. You have

already observed three exemplars in the wild with lengths of 16cm, 12cm, and 15cm

respectively. This data amounts to your training experience. Ideally, you can use this

experience to make better predictions about the length of the next individual you

encounter. You are said to have learned something if your performance is better after

seeing the data than it was before. Typical performance measures for this example problem
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include the mean squared error or the (negative) log-likelihood.

1.1. Bayesian Inference for Rational Analyses

In a rational analysis of cognition, researchers are trying to compare human behavior

to that of an optimal learning algorithm. However, it turns out that no learning algorithm

is better than another when averaged over all possible problems (Wolpert, 1996; Wolpert &

Macready, 1997), which means that we first have to make additional assumptions about

the to-be-solved problem to obtain a well-defined notion of optimality. For our running

example, one may make the following – somewhat unrealistic – assumptions:

1. Each observed insect length xk is sampled from a normal distribution with mean µ

and standard deviation σ.

2. An insect species’ mean length µ cannot be observed directly, but the standard

deviation σ is known to be 2cm.

3. Mean lengths across all insect species are distributed according to a normal

distribution with a mean of 10cm and a standard deviation of 3cm.

An optimal way of making predictions about new observations under such

assumptions is specified by Bayesian inference. Bayesian inference requires access to a prior

distribution p(µ) that defines an agent’s initial beliefs about possible parameter values

before observing any data and a likelihood p(x1:t|µ) that captures the agent’s knowledge

about how data is generated for a given set of parameters. In our running example, the

prior and the likelihood can be identified as follows:

p(µ) = N (µ; 10, 3) (1)

p(x1:t|µ) =
t∏

k=1
p(xk|µ) =

t∏
k=1
N (xk;µ, 2) (2)
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where x1:t = x1, x2, . . . , xt denotes a sequence of observed insect lengths and the product in

Equation 2 arises due to the additional assumption that observations are independent

given the parameters.

The outcome of Bayesian inference is a posterior predictive distribution p(xt+1|x1:t),

which the agent can use to make probabilistic predictions about a hypothetical future

observation. To obtain this posterior predictive distribution, the agent first combines prior

and likelihood into a posterior distribution over parameters by applying Bayes’ theorem:

p(µ|x1:t) = p(x1:t|µ)p(µ)∫
p(x1:t|µ)p(µ)dµ (3)

In a subsequent step, the agent then averages over all possible parameter values weighted

by their posterior probability to get the posterior predictive distribution:

p(xt+1|x1:t) =
∫
p(xt+1|µ)p(µ|x1:t)dµ (4)

Multiple arguments justify Bayesian inference as a normative procedure, and

thereby its use for rational analyses (Corner & Hahn, 2013). This includes dutch book

arguments (Lewis, 1999; M. Rescorla, 2020), free energy minimization (Friston, 2010;

Hinton & Van Camp, 1993), and performance-based justifications (Aitchison, 1975;

Rosenkrantz, 1992). For this article, we are mainly interested in the latter class of

performance-based justifications because these can be used – as we will demonstrate later

on – to derive meta-learning algorithms that learn approximations to Bayesian inference.

Performance-based justifications are based on the notion of frequentist statistics.

They assert that no learning algorithm can be better than Bayesian inference on a certain

performance measure. Particularly relevant for this article is a theorem first proved by

Aitchison (1975). It states that the posterior predictive distribution is the distribution

(from the set of all possible distributions Q) that maximizes the log-likelihood of

hypothetical future observations when averaged over the data-generating distribution
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p(µ, x1:t+1) = p(µ)p(x1:t+1|µ):

p(xt+1|x1:t) = arg max
q∈Q

Ep(µ,x1:t+1) [log q(xt+1|x1:t)] (5)

Equation 5 implies that if an agent wants to make a prediction about the length of a still

unobserved exemplar from a particular insect species and measures its performance using

the log-likelihood, then – averaged across all possible species that can be encountered –

there is no better way of doing it than using the posterior predictive distribution. We

decided to include a short proof of this theorem within Box 1 for the curious reader as it

does not appear in popular textbooks on probabilistic machine learning (Bishop, 2006;

Murphy, 2012) nor in survey articles on Bayesian models of cognition. Note that, while the

theorem itself is central to our later argument, working through its proof is not required to

follow the remainder of this article.

1.2. Meta-Learning

Having summarized the general concepts behind Bayes-optimal learning, we can

now start to describe meta-learning in more detail. Formally speaking, a meta-learning

algorithm is defined as any algorithm that “uses its experience to change certain aspects of

a learning algorithm, or the learning method itself, such that the modified learner is better

than the original learner at learning from additional experience” (Schaul & Schmidhuber,

2010).

To accomplish this, one first decides on an inner-loop (or base) learning algorithm

and determines which of its aspects can be modified. We also refer to these modifiable

aspects as meta-parameters. In an outer-loop (or meta-learning) process, the system is

then trained on a series of learning problems such that the inner-loop learning algorithm

gets better at solving the problems that it encounters. We provide a high-level overview of

this framework in Figure 2.

The previous definition is quite broad and includes a variety of methods. It is, for
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22cm . . . 20cm

3cm . . . 3cm

15cm . . . 16cm

15cm . . . 16cm

Base Learner

Performance Measure

= 15.5cm

p(xt+1 |x1:t)

Meta-Parameters

Learning

Meta-Learning

Figure 2
High-level overview of the meta-learning process. A base learner (green rectangle) receives
data and performs some internal computations that improve its predictions on future
data-points. A meta-learner (blue rectangle) encompasses a set of meta-parameters that can
be adapted to create an improved learner. This is accomplished by training the learner on a
distribution of related learning problems.

example, possible to meta-learn:

• Hyperparameters for a base learning algorithm, such as learning rates, batch sizes, or

the number of training epochs (Doya, 2002; Feurer & Hutter, 2019; Li, Zhou, Chen,

& Li, 2017).

• Initial parameters of a neural network that is trained via stochastic gradient descent

(Finn, Abbeel, & Levine, 2017; Nichol, Achiam, & Schulman, 2018).

• Prior distributions in a probabilistic graphical model (Baxter, 1998; Grant, Finn,

Levine, Darrell, & Griffiths, 2018).

• Entire learning algorithms (Hochreiter, Younger, & Conwell, 2001; Santoro,
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Bartunov, Botvinick, Wierstra, & Lillicrap, 2016).

While all these methods have their own merits, we will be primarily concerned with the

latter approach. Learning entire learning algorithms from scratch is arguably the most

general and ambitious type of meta-learning, and it is the focus of this article because it is

the only one among the aforementioned approaches leading to Bayes-optimal learning

algorithms that can be utilized for rational analyses.

1.3. Meta-Learned Inference

It may seem like a daunting goal to learn an entire learning algorithm from scratch,

but the core idea behind the approach we discuss in the following is surprisingly simple:

instead of using Bayesian inference to obtain the posterior predictive distribution, we teach

a general-purpose function approximator to do this inference. Previous work has mostly

focused on using recurrent neural networks as function approximators in this setting and

thus we will – without loss of generality – focus our upcoming exposition on this class of

models.

Like the posterior predictive distribution, the recurrent neural network processes a

sequence of observed length from a particular insect species and produces a predictive

distribution over the lengths of potential future observations from the same species. More

concretely, the meta-learned predictive distribution takes a predetermined functional form

whose parameters are given by the network outputs. If we had, for example, decided to use

a normal distribution as the functional form of the meta-learned predictive distribution,

outputs of the network would correspond to a expected length mt+1 and its standard

deviation st+1. Figure 3a illustrates this setup graphically.

Initially, the recurrent neural network implements a randomly initialized learning

algorithm.1 The goal of the meta-learning process is then to turn this system into an

1 Based on our earlier definition, it is at this point strictly speaking not a learning algorithm at all as it
does not improve with additional data.
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(a) Meta-Learning Setup (b) Pseudocode

x1 x2 xt

. . .Θ Θ Θ

(mt+1, st+1) ∇Θ log q(xt+1|x1:t,Θ)Forward

Backward

initialize Θ
while not converged do

. sample data
µ ∼ p(µ), x1:t+1 ∼ p(x1:t+1|µ)
. forward pass
q(xt+1|x1:t,Θ)← model(x1:t)
. backward pass and update
Θ← Θ+α∇Θ log q(xt+1|x1:t,Θ)

end while

(c) Meta-Learning Loss (d) Predictive Distributions
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Figure 3
Meta-learning illustration. (a) A recurrent neural network processes a sequence of
observations and produces a predictive distribution at the final time-step. (b) Pseudocode
for a simple meta-learning algorithm. (c) Loss during meta-learning with shaded contours
corresponding to the standard deviation across 30 runs. (d) Posterior and meta-learned
predictive distributions for an example sequence at beginning and end of meta-learning. The
dotted grey line denotes the (unobserved) mean length.

improved learning algorithm. The final result is a learning algorithm that is learned or

trained rather than specified by a practitioner. To create a learning signal to do this

training, we need a performance measure that can be used to optimize the network.

Equation 5 suggests a straightforward strategy for designing such a measure by replacing

the maximization over all possible distributions with a maximization over meta-parameters
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Θ (in our case, the weights of the recurrent neural network):

arg max
q∈Q

Ep(µ,x1:t+1) [log q(xt+1|x1:t)]

≈ arg max
Θ

Ep(µ,x1:t+1) [log q(xt+1|x1:t,Θ)] (6)

To turn this expression into a practical meta-learning algorithm, we will – as common

practice when training deep neural networks – maximize a sample-based version using

stochastic gradient ascent:

arg max
Θ

Ep(µ,x1:t+1) [log q(xt+1|x1:t,Θ)]

≈ arg max
Θ

1
N

N∑
n=1

log q(x(n)
t+1|x

(n)
1:t ,Θ) (7)

Figure 3b presents pseudocode for a simple gradient-based procedure that

maximizes Equation 7. The entire meta-learning algorithm can be implemented in just

around 30 lines of self-contained PyTorch code (Paszke et al., 2019). We provide an

annotated reference implementation on this article’s accompanying github repository.2

1.4. How Good Is a Meta-Learned Algorithm?

We have previously shown that the global optimum of Equation 7 is achieved by the

posterior predictive distribution. Thus, by maximizing this performance measure, the

network is actively encouraged to implement an approximation to exact Bayesian inference.

Importantly, after the completion of meta-learning, producing an approximation to the

posterior predictive distribution does not require any further updates to the network

weights. To perform an inference, we simply have to query the network’s outputs after

providing it with a particular sequence of observations.

If we want to use the fully optimized network for rational analyses, we have to ask

2 https://github.com/marcelbinz/meta-learned-models

https://github.com/marcelbinz/meta-learned-models
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ourselves: how well does the resulting model approximate Bayesian inference? Two aspects

have to be considered when answering this question. First, the network has to be

sufficiently expressive to produce the exact posterior predictive distribution for all input

sequences. Neural networks of sufficient width are universal function approximators

(Hornik, Stinchcombe, & White, 1989), meaning that they can approximate any continuous

function to arbitrary precision. Therefore, this aspect is not too problematic for the

optimality argument. The second aspect is a bit more intricate: assuming that the network

is powerful enough to represent the global optimum of Equation 7, the employed

optimization procedure also has to find it. While we are not aware of any theorem that

could provide such a guarantee, in practice, it has been observed that meta-learning

procedures similar to the one discussed here often lead to networks that closely

approximate Bayesian inference (Mikulik, Delétang, et al., 2020; Rabinowitz, 2019). We

provide a visualization demonstrating that the predictions of a meta-learned model closely

resemble those of exact Bayesian inference for our insect length example in Figure 3c-d.

While our exposition in this section focused on the supervised learning case, the

same ideas can also be readily extended to the reinforcement learning setting (Duan et al.,

2016; Wang et al., 2016). Box 2 outlines the general ideas behind the meta-reinforcement

learning framework.

1.5. Tool or Theory?

It is often not so trivial to separate meta-learning from normal learning. We believe

that part of this confusion arises from an underspecification regarding what is being

studied. In particular, the meta-learning framework provides opportunities to address two

distinct research questions:

1. It can be used to study how people improve their learning abilities over time.

2. It can be used as a methodological tool to construct learning algorithms with the

properties of interest (and thereafter compare the emerging learning algorithms to
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human behavior).

Historically, behavioral psychologists have been mainly interested in the former aspect

(Doya, 2002; Harlow, 1949). In the 1940s, for example, Harlow (1949) already studied how

learning in monkeys improves over time. He found that they adapted their learning

strategies after sufficiently many interactions with tasks that shared a common structure,

thereby showing a learning-to-learn effect. By now, examples of this phenomenon have

been found in many different species – including humans – across nature (Wang, 2021).

More recently, psychologists have started to view meta-learning as a methodological

tool to construct approximations to Bayes-optimal learning algorithms (Binz et al., 2022;

Kumar, Dasgupta, Cohen, Daw, & Griffiths, 2020a), and subsequently utilize the resulting

algorithms to study human cognition. The key difference from the former approach is that,

in this setting, one abstracts away from the process of meta-learning and instead focuses on

its outcome. From this perspective, only the fully converged model is of interest.

Importantly, this approach allows us to investigate human learning from a rational

perspective since we have demonstrated that meta-learning can be used to construct

approximations to Bayes-optimal learning.

We place an emphasis on the second aspect in the present article and advocate for

using fully converged meta-learned algorithms – as replacements for the corresponding

Bayesian models – for rational analyses of cognition.3 In the next section, we will outline

several arguments that support this approach. However, it is important to mention that we

believe that meta-learning can also be a valuable tool to understand the process of

learning-to-learn itself. In this context, several intriguing questions arise: at what time

scale does meta-learning take place in humans? How much of it is due to task-specific

3 There has been a longstanding conceptual debate in cognitive psychology on whether to view Bayesian
models as normative standards or descriptive tools. We believe that this debate is beyond the scope of the
current article and thus refer the reader to earlier work for an in-depth discussion (Griffiths, Chater,
Norris, & Pouget, 2012; Jones & Love, 2011; Tauber, Navarro, Perfors, & Steyvers, 2017; Zednik & Jäkel,
2016). We only want to add that the framework outlined here is agnostic to this issue – meta-learned
models may serve as both normative standards and descriptive tools.
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adaptations? How much of it is based on evolutionary or developmental processes? While

we agree that these are important questions, they are not the focus of this article.

2.Why Not Bayesian Inference?

We have just argued that it is possible to meta-learn Bayes-optimal learning

algorithms. What are the implications of this result? If one has access to two different

theories that make identical predictions, which of them should be preferred? Bayesian

inference has already established itself as a valuable tool for building cognitive models in

the recent decades. Thus, the burden of proof is arguably on the meta-learning framework.

In this section, we provide four different arguments that highlight the advantages of

meta-learning for building models of cognition. Many of these arguments are novel and

have not been put forward explicitly in previous literature. The first two arguments

highlight situations in which meta-learned models can be used for rational analysis but

traditional Bayesian models cannot. The latter two provide examples of how meta-learning

enables us to make rational models of cognition more realistic, either by incorporating

limited computational resources or neuroscientific insights.

2.1. Intractable Inference

Argument 1

Meta-learning can produce approximately optimal learning algorithms even if exact

Bayesian inference is computationally intractable.

Bayesian inference becomes intractable very quickly because the complexity of

computing the normalization constant that appears in the denominator grows

exponentially with the number of unobserved parameters. In addition, it is only possible to

find a closed-form expression of the posterior distribution for certain combinations of prior

and likelihood. In our running example, we assumed that both prior and likelihood follow a

normal distribution, which, in turn, leads to a normally-distributed posterior. However, if
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one would instead assume that the prior over mean length follows an exponential

distribution – which is arguably a more sensible assumption as it enforces lengths to be

positive – it becomes already impossible to find an analytical expression for the posterior

distribution.

Researchers across disciplines have recognized these challenges and have, in turn,

developed approaches that can approximate Bayesian inference without running into

computational difficulties. Prime examples of this are variational inference (Jordan,

Ghahramani, Jaakkola, & Saul, 1999) and Markov chain Monte-Carlo (MCMC) methods

(Geman & Geman, 1984). In variational inference, one phrases inference as an

optimization problem by positing a variational approximation whose parameters are fitted

to minimize a divergence measure to the true posterior distribution. MCMC methods, on

the other hand, draw samples from a Markov chain that has the posterior distribution as

its equilibrium distribution. Previous research in cognitive science indicates that human

learning shows characteristics of such approximations (Courville & Daw, 2008; Dasgupta,

Schulz, & Gershman, 2017; Daw, Courville, & Dayan, 2008; A. N. Sanborn, Griffiths, &

Navarro, 2010; A. N. Sanborn & Silva, 2013).

Meta-learned inference also never requires an explicit calculation of the exact

posterior or posterior predictive distribution. Instead, it performs approximately optimal

inference via a single forward pass through the network. Inference, in this case, is

approximate because we had to determine a functional form for the predictive distribution.

The chosen form may deviate from the true form of the posterior predictive distribution,

which, in turn, leads to approximation errors.4 In some sense, this type of approximation is

similar to variational inference: both approaches involve optimization and require one to

define a functional form of the respective distribution. However, the optimization process

in both approaches uses a different loss function and happens at different time scales.

4 In principle, one could select arbitrarily flexible functional forms, such as mixtures of normal distributions
or discretized distributions with small bin sizes, which would reduce the accompanying approximation error.
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While variational inference employs the negative evidence lower bound as its loss function,

meta-learning directly maximizes for models which can be expected to generalize well to

unseen observations (using the performance-based measure from Equation 5). Furthermore,

meta-learned inference only involves optimization during the outer-loop meta-learning

process but not during the actual learning itself. To update how a meta-learned model

makes predictions in the light of new data, we only have to perform a simple forward pass

through the network. In contrast to this, standard variational inference requires us to rerun

the whole optimization process from scratch every time a new data point is observed.5

In summary, it is possible to meta-learn an approximately Bayes-optimal learning

algorithm. If exact Bayesian inference is not tractable, such models are our best option for

performing rational analyses. Yet, many other methods for approximate inference, such as

variational inference and MCMC methods, also share this feature, and it will thus

ultimately be an empirical question which of these approximations provides a better

description of human learning.

2.2. Unspecified Problems

Argument 2

Meta-learning can produce optimal learning algorithms even if it is not possible to

phrase the corresponding inference problem in the first place.

Bayesian inference is hard, but posing the correct inference problem can be even

harder. What exactly do we mean by that? To perform Bayesian inference, we need to

specify a prior and a likelihood. Together, these two objects fully specify the assumed

data-generating distribution, and thus the inference problem. Ideally, the specified

data-generating distribution should match how the environment actually generates its data.

It is fairly straightforward to fulfill this requirement in artificial scenarios, but for many

5 This only holds for standard variational inference but not for more advanced methods that involve
amortization such as variational autoencoders (Kingma & Welling, 2013).
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real-world problems, it is not. Take for instance our running example: Does the prior over

mean length really follow a normal distribution? If yes, what are the mean and variance of

this distribution? Are the underlying parameters actually time-invariant or do they, for

example, change based on seasons? None of these questions can be answered with certainty.

In his seminal work on Bayesian decision theory, Savage (1972) made the distinction

between small and large world problems. A small world problem is one “in which all

relevant alternatives, their consequences, and probabilities are known” (Gigerenzer &

Gaissmaier, 2011). A large world problem, on the other hand, is one in which the prior, the

likelihood, or both cannot be identified. Savage’s distinction between small and large

worlds is relevant for the rational analysis of human cognition as its critics have pointed

out that Bayesian inference only provides a justification for optimal reasoning in small

world problems (Binmore, 2007) and that “very few problems of interest to the cognitive,

behavioral, and social sciences can be said to satisfy [this] condition” (Brighton &

Gigerenzer, 2012).

Identifying the correct set of assumptions becomes especially challenging once we

deal with more complex problems. To illustrate this, consider a study conducted by Lucas,

Griffiths, Williams, and Kalish (2015) who attempted to construct a Bayesian model of

human function learning. Doing so required them to specify a prior over functions that

people expect to encounter. Without direct access to such a distribution, they instead

opted for a heuristic solution: 98.8% of functions are expected to be linear, 1.1% are

expected to be quadratic, and 0.1% are expected to be non-linear. Empirically, this choice

led to good results, but it is hard to justify from a rational perspective. We simply do not

know the frequency with which these functions appear in the real world, nor whether the

given selection fully covers the set of functions expected by participants.

There are also inference problems in which it is not possible to specify or compute

the likelihood function. These problems have been studied extensively in the machine

learning community under the names of simulation-based or likelihood-free inference
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(Cranmer, Brehmer, & Louppe, 2020; Lueckmann, Boelts, Greenberg, Goncalves, & Macke,

2021). In this setting, it is typically assumed that we can sample data from the likelihood

for a given parameter setting but that computing the corresponding likelihood is

impossible. Take, for instance, our insect length example. It should be clear that an

insect’s length does not only depend on its species’ mean but on many other factors such as

climate, genetics, and the individual’s age. Even if all these factors were known, mapping

them to a likelihood function does seem close to impossible. But, we can generate samples

easily by observing insects in the wild. If we had access large database of insect length

measurements for different species, this could be directly used to meta-learn an

approximately Bayes-optimal learning algorithm for predicting their length, while

circumventing an explicit definition of a likelihood function.

In cases where we do not have access to a prior or a likelihood, we can neither apply

exact Bayesian inference nor approximate inference schemes such as variational inference or

MCMC methods. In contrast to this, meta-learned inference does not require us to define

the prior or the likelihood explicitly. It only demands samples from the data-generating

distribution to meta-learn an approximately Bayes-optimal learning algorithm – a much

weaker requirement (Müller, Hollmann, Arango, Grabocka, & Hutter, 2021). The ability to

construct Bayes-optimal learning algorithms for large worlds problems is a unique feature

of the meta-learning framework, and we believe that it could open up totally new avenues

for constructing rational models of human cognition. To highlight one concrete example, it

would be possible to take a collection of real-world decision-making tasks – such as the

ones presented by Czerlinski, Gigerenzer, Goldstein, et al. (1999) – and use them to obtain

a meta-learned agent that is adapted to the decision-making problems that people actually

encounter in their everyday lives. This algorithm could then serve as a normative standard

against which we can compare human decision-making.
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2.3. Resource Rationality

Argument 3

Meta-learning makes it easy to manipulate a learning algorithm’s complexity and can

therefore be used to construct resource-rational models of learning.

Bayesian inference has been successfully applied to model human behavior across a

number of domains, including perception (Knill & Richards, 1996), motor control (Körding

& Wolpert, 2004), everyday judgments (Griffiths & Tenenbaum, 2006), and logical

reasoning (Oaksford, Chater, et al., 2007). Notwithstanding these success stories, there are

also well-documented deviations from the notion of optimality prescribed by Bayesian

inference. People, for example, underreact to prior information (Kahneman & Tversky,

1973), ignore evidence (Benjamin, 2019), and rely on heuristic decision-making strategies

(Gigerenzer & Gaissmaier, 2011).

The intractability of Bayesian inference – together with empirically observed

deviations from it – has led researchers to conjecture that people only attempt to

approximate Bayesian inference. Many different notions of what constitutes a

computational resource have been suggested, such as memory (Dasgupta & Gershman,

2021), thinking time (Ratcliff & McKoon, 2008), or physical effort (Hoppe & Rothkopf,

2016).

Cover (1999) put forward a dichotomy that will be useful for our following

discussion. He refers to the algorithmic complexity of an algorithm as the number of bits

needed to implement it. In contrast, he refers to the computational complexity of an

algorithm as the space, time, or effort required to execute it. It is possible to cast many

approximate inference schemes as resource-rational algorithms (A. N. Sanborn, 2017). The

resulting models typically consider some form of computational complexity. In MCMC

methods, computational complexity can be measured in terms of the number of drawn

samples: drawing fewer samples leads to faster inference at the cost of introducing a bias

(Courville & Daw, 2008; A. N. Sanborn et al., 2010). In variational inference, on the other
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hand, it is possible to introduce an additional parameter that allows to trade-off

performance against the computational complexity of transforming the prior into the

posterior distribution (Binz & Schulz, 2022b; Ortega, Braun, Dyer, Kim, & Tishby, 2015).

Likewise, other frameworks for building resource-rational models, such as rational

meta-reasoning (Lieder & Griffiths, 2017), also only target computational complexity.

The prevalence of resource-rational models based on computational complexity is

likely due to the fact that building similar models based on algorithmic complexity is much

harder. Measuring algorithmic complexity historically relies on the notion of Kolmogorov

complexity, which is the size of the shortest computer program that produces a particular

data sequence (Chaitin, 1969; Kolmogorov, 1965; Solomonoff, 1964). Kolmogorov

complexity is in general uncomputable, and, therefore, of limited practical interest.6

Meta-learning provides us with a straightforward way to manipulate both

algorithmic and computational complexity in a common framework by adapting the size of

the underlying neural network model. Limiting the complexity of network weights places a

constraint on algorithmic complexity (as reducing the number of weights decreases the

amount of bits needed to store them, and hence also the amount of bits needed to store the

learning algorithm). Limiting the complexity of activations, on the other hand, places a

constraint on computational complexity (reducing the number of hidden units, for example,

decreases the memory needed for executing the meta-learned model).

Previously, both forms of complexity constraints have been realized in meta-learned

models. Dasgupta et al. (2020) decreased the number of hidden units of a meta-learned

inference algorithm, effectively reducing its computational complexity. In contrast, Binz et

al. (2022) placed a constraint on the description length of neural network weights, which

implements a form of algorithmic complexity. To the best of our knowledge, no other class

6 Having said that, it is possible to approximate it under certain circumstances and different authors have
applied such approximations to study both human and animal cognition (Chater & Vitányi, 2003; Gauvrit,
Zenil, Delahaye, & Soler-Toscano, 2014; Gauvrit, Zenil, & Tegnér, 2017; Griffiths, Daniels, Austerweil, &
Tenenbaum, 2018; Zenil, Marshall, & Tegnér, 2015).



META-LEARNED MODELS OF COGNITION 25

of resource-rational models exists that allows us to take both algorithmic and

computational complexity into account, making this ability a unique feature of the

meta-learning framework.

2.4. Neuroscience

Argument 4

Meta-learning allows us to integrate neuroscientific insights into the rational analysis

of cognition by incorporating these insights into model architectures.

In addition to providing a framework for understanding many aspects of behavior,

meta-learning offers a powerful lens through which to view brain structure and function.

For instance, Wang et al. (2018) presented observations supporting the hypothesis that

prefrontal circuits may constitute a meta-reinforcement learning system. From a

computational perspective, meta-learning strives to learn a faster inner-loop learning

algorithm via an adjustment of neural network weights in a slower outer-loop learning

process. Within the brain, an analogous process plausibly occurs when slow,

dopamine-driven synaptic change gives rise to reinforcement learning processes that occur

within the activity dynamics of the prefrontal network, allowing for adaptation on much

faster timescales. This perspective recontextualized the role of dopamine function in

reward-based learning and was able to account for a range of previously puzzling

neuroscientific findings. To highlight one example, Bromberg-Martin, Matsumoto, Hong,

and Hikosaka (2010) found that dopamine signaling reflected updates in not only

experienced but also inferred values of targets. Notably, a meta-reinforcement learning

agent trained on the same task also recovered this pattern. Having a mapping of

meta-reinforcement learning components onto existing brain regions furthermore allows us

to apply experimental manipulations that directly perturb neural activity, for example by

using optogenetic techniques. Wang et al. (2018) used this idea to modify their original

meta-reinforcement learning architecture to mimic the blocking or enhancement of
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dopaminergic reward prediction error signals, in direct analogy with optogenetic

stimulation delivered to rats performing a two-armed bandit task (Stopper, Maric, Montes,

Wiedman, & Floresco, 2014).

Importantly, the direction of exchange can also work in the other direction, with

neuroscientific findings constraining and inspiring new forms of meta-learning architectures.

Bellec, Salaj, Subramoney, Legenstein, and Maass (2018), for example, showed that

recurrent networks of spiking neurons are able to display convincing learning-to-learn

behavior, including in the realm of reinforcement learning. Episodic meta-reinforcement

learning (Ritter et al., 2018) architectures are also heavily inspired by neuroscientific

accounts of complementary learning systems in the brain (McClelland, McNaughton, &

O’Reilly, 1995). Both of these examples demonstrate that meta-learning can be used to

build more biologically plausible learning algorithms, and thereby highlight that it can act

as a bridge between Marr’s computational and implementational level (Marr, 2010).

Finally, the meta-learning perspective not only allows us to connect machine

learning and neuroscience via architectural design choices but also via the kinds of tasks

that are of interest. Dobs, Martinez, Kell, and Kanwisher (2022), for instance, suggested

that functional specialization in neural circuits, which has been widely observed in

biological brains, arises spontaneously as a consequence of task demands. In particular,

they found that convolutional neural networks trained on both face and object recognition

depicted emergent segregation on the basis of these tasks. Likewise, G. R. Yang, Joglekar,

Song, Newsome, and Wang (2019) found that training a single recurrent neural network to

perform a wide range of cognitive tasks yielded units that were clustered along different

functional cognitive processes. Put another way, it seems plausible that functional

specialization emerges by training neural networks on multiple tasks. While this has not

been tested so far, we speculate that this also holds in the meta-learning setting, as it

involves training on multiple tasks by design. If this were true, we could look at the

emerging areas inside a meta-learned model, and use the resulting insights to generate
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novel predictions about the processes happening in individual brain areas (Kanwisher,

Khosla, & Dobs, 2023).

3. Previous Research

Meta-learned models are already starting to transform the cognitive sciences today.

They allow us to model things that are hard to capture with traditional models such as

compositional generalization, language understanding, and model-based reasoning. In this

section, we provide an overview of what has been achieved with the help of meta-learning

in previous work. We arranged this review into various thematic subcategories. For each of

them, we summarize which key findings have been obtained by meta-learning and discuss

why these results would have been difficult to obtain using traditional models of learning

by appealing to the insights from the previous section.

3.1. Heuristics and Cognitive Biases

Meta-learning has been previously used to discover algorithms with a limited

computational budget that show human-like cognitive biases as we have already alluded to

earlier. Dasgupta et al. (2020) trained a neural network on a distribution of probabilistic

inference problems while controlling for the number of its hidden units. They found that

their model – when restricted to just a single hidden unit – captured many biases in human

reasoning, including a conservatism bias and base rate neglect. Likewise, Binz et al. (2022)

trained a neural network on a distribution of decision-making problems while controlling

for the number of bits needed to represent the network. Their model discovered two

previously suggested heuristics in specific environments and made precise prognoses about

when these heuristics should be applied. In particular, knowing the correct ranking of

features led to one reason decision-making, knowing the directions of features led to an

equal weighting heuristic, and not knowing about either of them led to strategies that use

weighted combinations of features (also see Figure 4a-b).
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Figure 4
Example results obtained using meta-learned models. (a) In a paired comparison task, a
meta-learned model identified a single-cue heuristic as the resource-rational solution when
information about the feature ranking was available. Follow-up experiments revealed that
people indeed apply this heuristic under the given circumstances. (b) If information about
feature directions was available, the same meta-learned model identified an equal weighting
heuristic as the resource-rational solution. People also applied this heuristic in the given
context (Binz et al., 2022). (c) Wang et al. (2016) showed that meta-learned models can
exhibit model-based learning characteristics in the two-step task (Daw, Gershman,
Seymour, Dayan, & Dolan, 2011) even when they were purely trained through model-free
approaches. The plots on the right illustrate the probability of repeating the previous action
for different agents (model-free, model-based, meta-learned) after a common or uncommon
transition and after a received or omitted reward.

In both of these studies, meta-learned models offered a novel perspective on results

that were previously viewed as contradictory. This was in part possible because
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meta-learning enabled us to easily manipulate the complexity of the underlying learning

algorithm. While doing so is, at least in theory, also possible within the Bayesian

framework, no Bayesian model that captures the full set of findings from Dasgupta et al.

(2020) and Binz et al. (2022) has been discovered so far. We hypothesize that this could be

because traditional rational process models struggle to capture that human strategy

selection is context-dependent even before receiving any direct feedback signal (Mercier &

Sperber, 2017). The meta-learned models of Dasgupta et al. (2020) and Binz et al. (2022),

on the other hand, were able to readily show context-specific biases when trained on an

appropriate task distribution.

3.2. Language Understanding

Meta-learning may also help us to answer questions regarding how people process,

understand, and produce language. Whether the inductive biases needed to acquire a

language are learned from experience or are inherited is one of these questions (Y. Yang &

Piantadosi, 2022). McCoy, Grant, Smolensky, Griffiths, and Linzen (2020) investigated how

to equip a model with a set of linguistic inductive biases that are relevant to human

cognition. Their solution to this problem builds upon the idea of model-agnostic

meta-learning (Finn et al., 2017). In particular, they meta-learned the initial weights of a

neural network such that the network can adapt itself quickly to new languages using

standard gradient-based learning. When being trained on a distribution over languages,

these initial weights can be interpreted as universal factors that are shared across all

languages. They showed that this approach identifies inductive biases (e.g. a bias for

treating certain phonemes as vowels) that are useful for acquiring a language’s syllable

structure. While their work focused on various modeling aspects, they suggested that their

framework “could [. . .] be used to empirically investigate the effects that those inductive

biases have.” They additionally argued that a Bayesian modeling approach would only be

able to consider a restrictive set of inductive biases as it needs to commit to a particular
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representation and inference algorithm. In contrast, the meta-learning framework made it

easy to implement the intended inductive biases by simply manipulating the distribution of

encountered languages.

The ability to compose simple elements into complex entities is at the heart of

human language. The property of languages to “make infinite use of finite means”

(Chomsky, 2014) is what allows us to make strong generalizations from limited data. For

example, people readily understand what it means to “dax twice” or to “dax slowly” after

learning about the meaning of the verb “dax.” How to build models with a similar

proficiency, however, remains an open research question. Lake (2019) showed that a

transformer-like neural network can be trained to make such compositional generalizations

through meta-learning. Importantly, during meta-learning, his models were adapted to

problems that required compositional generalization, and could thereby acquire the skills

needed to solve entirely new problems. Lake (2019) argued that meta-learning “has

implications for understanding how people generalize compositionally.” In particular, it

highlights the importance of “tackling a series of changing learning problems rather than

iterating through a static data-set”, as it is done in traditional neural network training

schemes.

3.3. Inductive Biases

Human cognition comes with many useful inductive biases beyond the ability to

reason compositionally. The preference for simplicity is one of these biases (Chater &

Vitányi, 2003; Feldman, 2016). We readily extract abstract low-dimensional rules that

allow us to generalize entirely new situations. Meta-learning is an ideal tool to build

models with similar preferences because we can easily generate tasks based on simple rules

and use them for meta-learning, thereby enabling an agent to acquire the desired inductive

bias from data.

Towards this end, Kumar, Dasgupta, Cohen, Daw, and Griffiths (2020b) tested



META-LEARNED MODELS OF COGNITION 31

humans and meta-reinforcement agents on a family of structured tasks generated by a

grammar and compared their performance to those trained on a non-structured version of

the same task with matched statistics. They expanded these results to a larger suite of

tasks generated from simple abstract rules in Kumar, Dasgupta, et al. (2022). Humans

found it easier to learn in structured tasks, confirming that they have strong priors towards

simple abstract rules (Schulz, Tenenbaum, Duvenaud, Speekenbrink, & Gershman, 2017).

However, their analysis also indicated that meta-learning is easier on non-structured tasks

than on structured tasks. In follow-up work, they found that this result also holds for

agents that were trained purely on the structured version of their task but evaluated on

both versions (Kumar, Correa, et al., 2022) – a quite astonishing finding considering that

one would expect an agent to perform better on the task distribution it was trained on.

The authors addressed this mismatch between humans and meta-learned agents by guiding

agents during training to reproduce natural language descriptions that people provided to

describe a given task. They found that grounding meta-learned agents in natural language

descriptions not only improved their performance but also led to more human-like

inductive biases, demonstrating that natural language can serve as a source for

abstractions within human cognition.

Their line of work utilizes another interesting technique for training meta-learning

agents (Kumar, Correa, et al., 2022; Kumar, Dasgupta, et al., 2022). It does not rely on a

hand-designed task distribution but instead involves sampling tasks from the prior

distribution of human participants using a technique known as Gibbs sampling with people

(Harrison et al., 2020; A. Sanborn & Griffiths, 2007). While doing so provides them with a

data-set of tasks, no expression of the corresponding prior distribution over them is

accessible and, hence, it is non-trivial to define a Bayesian model for the given setting. A

meta-learned agent, on the other hand, was readily obtained by training on the collected

samples.
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3.4. Model-Based Reasoning

Many realistic scenarios afford two distinct types of learning: model-free and

model-based. Model-free learning algorithms directly adjust their strategies using observed

outcomes. Model-based learning algorithms, on the other hand, learn about the transition

and reward probabilities of an environment, which are then used for downstream reasoning

tasks. People are generally thought to be able to perform model-based learning, at least to

some extent, and assuming that the problem at hand calls for it (Daw et al., 2011; Kool,

Cushman, & Gershman, 2016). Wang et al. (2016) showed that a meta-learned algorithm

can display model-based behavior, even if it was trained through a pure model-free

reinforcement learning algorithm (see Figure 4c).

Having a model of the world also acts as the basis for causal reasoning.

Traditionally, making causal inferences relies on the notion of Pearl’s do-calculus (Pearl,

2009). Dasgupta et al. (2019), however, showed that meta-learning can be used to create

models that draw causal inferences from observational data, select informative

interventions, and make counterfactual predictions. While they have not related their

model to human data directly, it could in future work serve as the basis to study how

people make causal judgments in complex domains and explain why and when they deviate

from normative causal theories (Bramley, Dayan, Griffiths, & Lagnado, 2017; Gerstenberg,

Goodman, Lagnado, & Tenenbaum, 2021).

Together, these two examples highlight that model-based reasoning capabilities can

emerge internally in a meta-learned model if they are beneficial for solving the encountered

problem. While there are already many traditional models that can perform such tasks,

these models are often slow at run-time as they typically involve Bayesian inference,

planning, or both. Meta-learning, on the other hand, “shifts most of the compute burden

from inference time to training time [which] is advantageous when training time is ample

but fast answers are needed at run-time” (Dasgupta et al., 2019), and may therefore explain

how people can perform such intricate computations within a reasonable time-frame.
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While model-based reasoning is an emerging property of meta-learned models, it

may also be integrated explicitly into such models should it be desired. Jensen, Hennequin,

and Mattar (2023) have taken this route, and augmented a standard meta-reinforcement

learning agent with the ability to perform temporally extended planning using imagined

rollouts. In each time-step, their agent can decide to perform a planning operation instead

of directly interacting with the environment (in this case, a spatial navigation task). Their

meta-learned agents opted to perform this planning operation consistently after training.

Importantly, the model showed striking similarities to patterns of human deliberation by

performing more planning early on and with an increased distance to the goal.

Furthermore, they found that patterns of hippocampal replays resembled the rollouts of

their model.

3.5. Exploration

People do not only have to integrate observed information into their existing

knowledge, but they also have to actively determine what information to sample. They

constantly face situations that require them to decide whether they should explore

something new or whether they should rather exploit what they already know. Previous

research suggests that people solve this exploration-exploitation dilemma using a

combination of directed and random exploration strategies (Gershman, 2018; Schulz &

Gershman, 2019; Wilson, Geana, White, Ludvig, & Cohen, 2014; Wu, Schulz,

Speekenbrink, Nelson, & Meder, 2018). Why do people use these particular strategies and

not others? Binz and Schulz (2022a) hypothesized that they do so because human

exploration follows resource-rational principles. To test this claim, they devised a family of

resource-rational reinforcement learning algorithms by combining ideas from meta-learning

and information theory. Their meta-learned model discovered a diverse set of exploration

strategies, including random and directed exploration, that captured human exploration

better than alternative approaches. In this domain, meta-learning offered a direct path
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towards investigating the hypothesis that people try to explore optimally but are subject to

limited computational resources, whereas designing hand-crafted models for studying the

same question would have been more intricate.

It is not only important to decide how to explore, but also to decide whether

exploration is worthwhile in the first place. Lange and Sprekeler (2020) studied this

question using the meta-learning framework. Their meta-learned agents are able to flexibly

interpolate between implementing exploratory learning behaviors and hard-coded,

non-learning strategies. Importantly, which behavior was realized crucially depended on

environmental properties, such as the diversity of the task distribution, the task

complexity, and the agent’s lifetime. They showed, for instance, that agents with a short

lifetime should opt for small rewards that are easy to find, while agents with an extended

lifetime should spend their time exploring the environment. The study of Lange and

Sprekeler (2020) clearly demonstrates that meta-learning makes it conceptually easy to

iterate over different environmental assumptions inside a rational analysis of cognition.

They only had to modify the environment as desired, followed by rerunning their

meta-learning procedure. In contrast, traditional modeling approaches would require

hand-designing a new optimal agent each time an environmental change occurs.

3.6. Cognitive Control

Humans are remarkable at adapting to task-specific demands. The processes behind

this ability are collectively referred to as cognitive control (Botvinick, Braver, Barch,

Carter, & Cohen, 2001). Cohen (2017) even argues that “the capacity for cognitive control

is perhaps the most distinguishing characteristic of human behavior.” It should therefore

come as no surprise that cognitive control has received a significant amount of attention

from a computational perspective (Botvinick & Cohen, 2014; Collins & Frank, 2013).

Recently, some of these computational investigations have been extended to the

meta-learning framework.
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The ability to adjust computational resources as needed is one hallmark of cognitive

control. Moskovitz, Miller, Sahani, and Botvinick (2022) proposed a meta-learned model

with such characteristics. Their model learns a simple default policy – similar to the model

of Binz and Schulz (2022a) – that can be overwritten by a more complex one if necessary.

They demonstrate that this model is not only able to capture behavioral phenomena from

the cognitive control literature but also known effects in decision-making and reinforcement

learning tasks, thereby linking the three domains. Importantly, their study highlights that

the meta-learning framework offers the means to account for multiple computational costs

instead of just a single one – in this case, a cost for implementing the default policy and

one for deviating from it.

Taking contextual cues into consideration is another vital aspect of cognitive

control. Dubey, Grant, Luo, Narasimhan, and Griffiths (2020) implemented this idea in the

meta-learning framework. In their model, contextual cues determine the initialization of a

task-specific neural network that is then trained using model-agnostic meta-learning. They

showed that such a model captures “the context-sensitivity of human behavior in a simple

but well-studied cognitive control task.” Furthermore, they demonstrated that it scales

well to more complex domains (including tasks from the MuJoCo (Todorov, Erez, & Tassa,

2012), CelebA Liu, Luo, Wang, and Tang (2015) and MetaWorld (Yu et al., 2020)

benchmarks), thereby opening up new opportunities for modeling human behavior in

naturalistic scenarios.

4.Why Is Not Everything Meta-Learned?

We have laid out different arguments that make meta-learning a useful tool for

constructing cognitive models, but it is important to note that we do not claim that

meta-learning is the ultimate solution to every modeling problem. Instead, it is essential to

understand when meta-learning is the right tool for the job and when not.
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4.1. Lack of Interpretability

Perhaps its most significant detriment is that meta-learning never provides us with

analytical solutions that we can inspect, analyze and reason about. In contrast to this,

some Bayesian models have analytical solutions. Take as an example the data-generating

distribution that we encountered earlier (Equations 1-2). For these assumptions, a

closed-form expression of the posterior predictive distribution is available. By looking at

this closed-form expression, researchers have generated new predictions and subsequently

tested them empirically (Daw et al., 2008; Dayan & Kakade, 2000; Gershman, 2015).

Performing the same kind of analysis with a meta-learned model is not as straightforward.

We do not have access to an underlying mathematical expression, which makes a

structured exploration of theories much harder.

That being said, there are still ways to analyze a meta-learned model’s behavior.

For one, it is possible to use model architectures that facilitate interpretability. Binz et al.

(2022) relied on this approach and designed a neural network architecture that produced

weights of a probit regression model which were then used to cluster applied strategies into

different categories. Doing so enabled them to identify which strategy was used by their

meta-learned model in a particular situation.

Recently, researchers have also started to use tools from cognitive psychology to

analyze the behavior of black-box models (Rich & Gureckis, 2019; Ritter, Barrett, Santoro,

& Botvinick, 2017; Schulz & Dayan, 2020). For example, it is possible to treat such models

just like participants in a psychological experiment and use the collected data to analyze

their behavior similar to how psychologists would analyze human behavior (Binz & Schulz,

2023; Dasgupta et al., 2022; Rahwan et al., 2019; Schramowski, Turan, Andersen,

Rothkopf, & Kersting, 2022). We believe that this approach has great potential for

analyzing increasingly capable and opaque artificial agents, including those obtained via

meta-learning.
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4.2. Intricate Training Processes

When using the meta-learning framework, one also has to deal with the fact that

training neural networks is complex and takes time. Neural network models contain many

moving parts, like weight initializations or the used optimizer, that have to be chosen

appropriately such that training can take off in the first place, and training itself may take

hours or days until it is finished. When we want to modify assumptions in the

data-generating distribution, we have to retrain the whole system from scratch altogether.

Thus, although the process of iterating over different environmental assumptions is

conceptually straightforward in the meta-learning framework, it may be time-consuming.

Bayesian models can, in comparison, sometimes be more quickly adapted to changes in

environmental assumptions. To illustrate this, let us assume that you wanted to explain

human behavior through a meta-learned model that was trained on the data-generating

distribution from Equations 1-2, but found that the resulting model does not fit the

observed data well. Next, you want to consider the alternative hypothesis that people

assume a non-stationary environment. While this modification could be done quickly in the

corresponding Bayesian model, the meta-learning framework requires retraining on newly

generated data.

There is, furthermore, no guarantee that a fully converged meta-learned model

actually implements a Bayes-optimal learning algorithm. While we were able to compare to

analytical solutions for simple cases like our insect length example, it is in general

impossible to verify that a meta-learned algorithm is optimal. Indeed, there are reported

cases in which meta-learning failed to find the Bayes-optimal solution (Wang et al., 2021).

We believe that this issue can be somewhat mitigated by validating meta-learned models in

various different ways. But, ultimately future work should come up with techniques to

verify meta-learned models.
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4.3. Meta-Learned or Bayesian Inference?

In summary, both frameworks — meta-learning and Bayesian inference – have their

unique strengths and weaknesses. The meta-learning framework does and will not replace

Bayesian inference but complement it. It broadens our available toolkit and enables

researchers to study questions that were previously out of reach. However, there are

certainly situations in which traditional Bayesian inference is a more appropriate modeling

choice as we have outlined in this section.

5. The Role of Neural Networks

Most of the points we have discussed so far are agnostic regarding the function

approximator implementing the meta-learned algorithm. However, at the same time, we

have appealed to neural networks at various points throughout the text. When one looks

at prior work, it can also be observed that neural networks are the predominant model

class in the meta-learning setting. Why is that the case? In addition to their universality,

neural networks offer one big opportunity: they provide a flexible framework for

engineering different types of inductive biases into a computational model (Goyal &

Bengio, 2022). In the following section, we will highlight three examples of how previous

work has accomplished this. For each of these examples, we take a concept from

psychology, and show how it can be readily accommodated in a meta-learned model.

Perhaps one of the most persuasive idea in cognitive modeling is that of

gradient-based learning. It is not only at the heart of one of the most influential models –

the Rescorla-Wagner model (Gershman, 2015; R. A. Rescorla, 1972) – but also features

prominently in many other theories of human learning, such as connectionist models

(Rumelhart, McClelland, Group, et al., 1988). Even though the earlier outlined

meta-learning procedure relies on gradient-based learning in the outer loop, the resulting

inner-loop dynamics must bear no resemblance to gradient descent. However, it is possible

to construct meta-learned models whose inner-loop updates rely on gradient-based
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learning. Finn et al. (2017) proposed a meta-learning technique known as model-agnostic

meta-learning that finds optimal initial parameters of a feedforward neural network that is

subsequently trained via gradient descent. The idea is that these optimal initial parameters

allow the feedforward network to generalize to multiple tasks in a minimal number of

gradient steps. While their general setup is similar to the one we discussed, it leads to

models that learn via gradient descent instead of models that implement a learning

algorithm inside the dynamics of a recurrent neural network. Kirsch and Schmidhuber

(2021) recently brought these two approaches together into a single model. Their proposed

architecture consists of multiple recurrent neural networks that interact with each other.

Importantly, they showed that one particular configuration of these networks could

implement backpropagation in the forward pass, thereby being able to perform

gradient-based learning in a memory-based system.

Exemplar-based models – like the generalized category model (Nosofsky, 2011) – are

one of the most prominent approaches for modeling how people categorize items into

different classes (Kruschke, 1990; Shepard, 1987). They categorize a new instance based on

the estimated similarity between that instance and previously seen examples. Recently,

meta-learned models with exemplar-based reasoning abilities have been proposed for the

task of few-shot classification, in which a classifier must generalize based on a training set

containing only a few examples. Matching networks (Vinyals, Blundell, Lillicrap, Wierstra,

et al., 2016) accomplish this by classifying a new data-point using a similarity-weighted

combination of categories in the training set. Importantly, similarity is computed over a

learned embedding space, thereby ensuring that the model can scale to high-dimensional

stimuli. Follow-up work has taken inspiration from another hugely influential model of

human category learning and replaced the exemplar-based mechanism used in matching

networks with one based on category prototypes (Snell, Swersky, & Zemel, 2017).

Finally, making inferences using similarities to previous experiences is not only

useful for supervised learning but also in the reinforcement learning setting. In the
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reinforcement learning literature, the ability to store and recollect states or trajectories for

later use is studied under the name of episodic memory (Lengyel & Dayan, 2007). It has

been argued that episodic memory could be the key to explaining human performance in

naturalistic environments (Gershman & Daw, 2017). Episodic memory also plays a crucial

role in neuroscience, with studies showing that highly rewarding instances are stored in the

hippocampus and made available for recall as and when required Blundell et al. (2016).

Ritter et al. (2018) build upon the neural episodic control idea from Pritzel et al. (2017)

and utilize a differential neural dictionary for episodic recall in the context of

meta-learning. Their dictionary stores encodings from previously experienced tasks, which

can then be later queried as needed. With this addition, their meta-learned model is able

to recall previously discovered policies, retrieve memories using category examples, handle

compositional tasks, re-instate memories while traversing the environment, and recover a

learning strategy people use in a neuroscience-inspired task.

In summary, human cognition comes with a variety of inductive biases and neural

networks provide flexible ways to easily incorporate them into meta-learned models of

cognition. We have outlined three such examples in the section, demonstrating how to

integrate gradient-based learning, exemplar- and prototype-based reasoning, and episodic

memory into a meta-learned model. There are, furthermore, many other inductive biases

for neural network architectures that could be utilized in the context of meta-learning but

have not been yet. Examples include networks that perform differentiable planning

(Farquhar, Rocktäschel, Igl, & Whiteson, 2017; Tamar, Wu, Thomas, Levine, & Abbeel,

2016), extract object-based representations (Piloto, Weinstein, Battaglia, & Botvinick,

2022; Sancaktar, Blaes, & Martius, 2022), or modify their own connections through

synaptic plasticity (Miconi, Rawal, Clune, & Stanley, 2020; Schlag, Irie, & Schmidhuber,

2021).
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6. Towards a Domain-General Model of Human Learning

What does the future hold for meta-learning? The current generation of

meta-learned models of cognition is almost exclusively trained on the data-generating

distribution of a specific problem family. While this training process enables them to

generalize to new tasks inside this problem family, they are unlikely to generalize to

completely different domains. We would, for example, not expect a meta-learned algorithm

to perform a challenging maze navigation task if it was only trained to predict the lengths

of insect species.

While domain-specific models have (and will continue to) provide answers to

important research questions, we agree with Newell (1992) that “unified theories of

cognition are the only way to bring this wonderful, increasing fund of knowledge under

intellectual control.” Ideally, such a unified theory should manifest itself in a

domain-general cognitive model that cannot only solve prediction tasks but is also capable

of human-like decision-making (Gigerenzer & Gaissmaier, 2011), category learning (Ashby,

Maddox, et al., 2005), navigation (Montello, 2005), problem-solving (Newell, Simon, et al.,

1972) and so on. We consider the meta-learning framework the ideal tool for accomplishing

this goal as it allows us to compile arbitrary assumptions about an agent’s beliefs of the

world (arguments 1 and 2) and its computational architecture (arguments 3 and 4) into a

cognitive model.

To obtain such a domain-general cognitive model via meta-learning, however, a few

challenges need to be tackled. First of all, there is the looming question of how a

data-generating distribution that contains many different problems should be constructed.

Here, we may take inspiration from the machine learning community, where researchers

have devised generalist agents by training neural networks on a large set of problems (Reed

et al., 2022). (A. A. Team et al., 2023) have recently shown that this is a promising path

for scaling up meta-learning models. They trained a meta-reinforcement learning agent on

a vast open-ended world with over 1040 possible tasks. The resulting agent can adapt to
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held-out problems as quickly as humans, and “displays on-the-fly hypothesis-driven

exploration, efficient exploitation of acquired knowledge, and can successfully be prompted

with first-person demonstrations.” In the same vein, we may come up with a large

collection of tasks that are more commonly used to study human behavior (Miconi, 2023;

Molano-Mazon et al., 2022; G. R. Yang et al., 2019), and use them to train a meta-learned

model of cognition.

Language will likely play an important role in future meta-learning systems. We do

not want a system that learns every task from scratch via trial and error but one that can

be provided with a set of instructions similar to how a human subject would be instructed

in a psychological experiment. Having agents capable of language will not only enable

them to understand new tasks in a zero-shot manner but may also facilitate their cognitive

abilities. It, for example, allows them to decompose tasks into sub-tasks, learn from other

agents, or generate explanations (Colas, Karch, Moulin-Frier, & Oudeyer, 2022).

Fortunately, our current best language models (Brown et al., 2020; Chowdhery et al., 2022)

and meta-learning systems are both based on neural networks. Thus, integrating language

capabilities into a meta-learned model of cognition should – at least conceptually – be

fairly straightforward. Doing so would furthermore enable such models to harvest the

compositional nature of language to make strong generalizations to tasks outside of the

meta-learning distribution. The potential for this was highlighted in a recent study of

(Riveland & Pouget, 2022) which found that language-conditioned recurrent neural

network models can perform entirely novel psychophysical tasks with high accuracy.

Moreover, a sufficiently general model of human cognition must not only be able to

select amongst several given options, like in a decision-making or category learning setting,

but it also needs to maneuver within a complex world. For this, it needs to perceive and

process high-dimensional visual stimuli, it needs to control a body with many degrees of

freedom, and it needs to actively engage with other agents. Many of these problems have

been at the heart of the deep learning community (Hill et al., 2020; McClelland, Hill,
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Rudolph, Baldridge, & Schütze, 2020; Strouse, McKee, Botvinick, Hughes, & Everett, 2021;

O. E. L. Team et al., 2021), and it will be interesting to see whether the solutions

developed there can be integrated into a meta-learned model of cognition.

Finally, there are also some challenges on the algorithmic side that need to be taken

into account. In particular, it is unclear how far currently used model architectures and

outer-loop learning algorithms scale. While contemporary meta-learning algorithms are

able to find approximately Bayes-optimal solutions to simple problems, they sometimes

struggle to do so on more complex ones (e.g. as in the earlier discussed work of Wang et al.

(2021)). Therefore, it seems likely that simply increasing the complexity of the

meta-learning distribution will not be sufficient – we will also need model architectures and

outer-loop learning algorithms that can handle increasingly complex data-generating

distributions. The transformer architecture (Vaswani et al., 2017), which has been very

successful at training large language models (Brown et al., 2020; Chowdhery et al., 2022),

provides one promising candidate, but there could be countless other (so far undiscovered)

alternatives.

Thus, taken together, there are still substantial challenges involved in creating a

domain-general meta-learned model of cognition. In particular, we have argued in this

section that we need to (1) meta-learn on more diverse task distributions, (2) develop

agents that can parse instructions in form of natural language, (3) embody these agents in

realistic problem settings, and (4) find model architectures that scale to these complex

problems. Figure 5 summarizes these points graphically.

7. Conclusion

Most computational models of human learning are hand-designed, meaning that at

some point a researcher sat down and defined how they behave. Meta-learning starts with

an entirely different premise. Instead of designing learning algorithms by hand, one trains a

system to achieve its goals by repeatedly letting it interact with an environment. While
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Find as many apples as possible.

Base Learner
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π(at |ht)

Meta-Parameters

Learning

Meta-Learning

Figure 5
Illustration of how a domain-general meta-learned model of cognition could look like.
Modifications include training on more diverse task distributions, providing natural
language instructions as additional inputs, and relying on scalable model architectures.

this seems quite different from traditional models of learning on the surface, we have

highlighted that the meta-learning framework actually has a deep connection to the idea of

Bayesian inference, and thereby to the rational analysis of cognition. Using this connection

as a starting point, we have highlighted several advantages of the meta-learning framework

for constructing rational models of cognition. Together, our arguments demonstrate that

meta-learning cannot only be applied in situations where Bayesian inference is impossible

but also facilitates the inclusion of computational constraints and neuroscientific insights

into rational models of human cognition. Earlier criticisms of the rational analysis of

cognition have repeatedly pointed out that “rational Bayesian models are significantly

unconstrained” and that they should be “developed in conjunction with mechanistic

considerations to offer substantive explanations of cognition” (Jones & Love, 2011). We

believe that the meta-learning framework provides the ideal opportunity to do so as it
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allows for a painless integration of flexible computational mechanisms.

It is worth pointing out that meta-learning can be also motivated by taking neural

networks as a starting point. From this perspective, it bridges two of the most popular

theories of cognition – Bayesian models and connectionism – by bringing the scalability of

neural network models into the rational analysis of cognition. We, therefore, believe that

meta-learning provides a powerful tool to scale up psychological theories to more complex

settings. However, at the same time, meta-learning has not delivered on this promise yet.

Existing meta-learned models of cognition are typically applied to classical scenarios where

established models already exist. Thus, we have to ask: what prevents the application to

more complex and general paradigms? First, such paradigms themselves have to be

developed. Fortunately, there is currently a trend toward measuring human behavior on

more naturalistic tasks (Brändle, Stocks, Tenenbaum, Gershman, & Schulz, 2022; Brändle,

Binz, & Schulz, 2022; Schulz et al., 2019), and it will be interesting to see what role

meta-learning will play in modeling behavior in such settings. Furthermore, meta-learning

can be intricate and time-consuming. We hope that the present article – together with the

accompanying code examples – makes this technique less opaque and more accessible to a

wider audience. Future advances in hardware will likely make the meta-learning process

quicker and we are therefore hopeful that meta-learning can ultimately fulfill its promise of

identifying plausible models of human cognition in situations that are out of reach for

hand-designed algorithms.
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Box 1. We proof that the posterior predictive distribution p(xt+1|x1:t) maximizes the log-
likelihood of future observations averaged over the data-generating distribution:

p(xt+1|x1:t) = arg max
q

Ep(µ,x1:t+1) [log q(xt+1|x1:t)] (8)

The essence of this proof is to show that the posterior predictive distribution is superior to any
other reference distribution r(xt+1|x1:t) in terms of log-likelihood:

Ep(µ,x1:t) [log p(xt+1|x1:t)] ≥ Ep(µ,x1:t) [log r(xt+1|x1:t)]

or equivalently that:

Ep(µ,x1:t)

[
log p(xt+1|x1:t)

r(xt+1|x1:t)

]
≥ 0

Proofing this conjecture is straight-forward (Aitchison, 1975):

Ep(µ,x1:t)

[
log p(xt+1|x1:t)

r(xt+1|x1:t)

]
=
∑
µ

∑
x1:t

∑
xt+1

log p(xt+1|x1:t)
r(xt+1|x1:t)

p(xt+1|µ)p(x1:t|µ)p(µ) definition of
expectation

=
∑
x1:t

∑
µ

∑
xt+1

log p(xt+1|x1:t)
r(xt+1|x1:t)

p(xt+1|µ)p(x1:t|µ)p(µ) change order
of summation

=
∑
x1:t

∑
µ

∑
xt+1

log p(xt+1|x1:t)
r(xt+1|x1:t)

p(xt+1|µ)p(µ|x1:t)p(x1:t) Bayes’ rule

=
∑
x1:t

∑
µ

∑
xt+1

log p(xt+1|x1:t)
r(xt+1|x1:t)

p(xt+1|µ)p(µ|x1:t)

 p(x1:t)
factor out
p(x1:t)

=
∑
x1:t

∑
xt+1

∑
µ

log p(xt+1|x1:t)
r(xt+1|x1:t)

p(xt+1|µ)p(µ|x1:t)

 p(x1:t)
change order
of summation

=
∑
x1:t

∑
xt+1

log p(xt+1|x1:t)
r(xt+1|x1:t)

[∑
µ

p(xt+1|µ)p(µ|x1:t)
] p(x1:t)

factor out
log-term

=
∑
x1:t

∑
xt+1

log p(xt+1|x1:t)
r(xt+1|x1:t)

p(xt+1|x1:t)

 p(x1:t) Equation 4

=
∑
x1:t

KL [p(xt+1|x1:t)||r(xt+1|x1:t)] p(x1:t)
definition of
KL divergence

≥ 0 �

Note that while we used sums in our proof, thereby assuming that relevant quantities take dis-
crete values, the same ideas can be readily applied to continuous-valued quantities by replacing
sums with integrals.
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Box 2. The main text has focused on tasks in which an agent receives direct feedback about
which response would have been correct. In the real world, however, people do not always
receive such explicit feedback. They, instead, often have to deal with partial information –
taking the form of rewards, utilities, or costs – that merely informs them about the quality of
their response.

Problems that fall into this category are often modeled as Markov decision processes (MDPs).
In an MDP, an agent repeatedly interacts with an environment. In each time-step, it observes
the state of the environment st and can take an action at that leads to a reward signal
rt sampled from a reward distribution p(rt|st, at, µr). Executing an action furthermore
influences the environment state at the next time-step according to a transition distribution
p(st+1|st, at, µs).

The goal of a Bayes-optimal reinforcement learning agent is to find a policy, which is a mapping
from a history of observations ht = s1, a1, r1, . . . , st−1, at−1, rt−1, st to a probability distribution
over actions π∗(at|ht), that maximizes the total amount of obtained rewards across a finite
horizon H averaged over all problems that may be encountered:

π∗(at|ht) = arg max
π

Ep(µr,µs)
∏
p(rt|st,at,µr)p(st+1|st,at,µs)π(at|ht)

[
H∑
t=1

rt

]
(9)

MDPs with unknown reward and transition distributions are substantially more challenging
to solve optimally compared to supervised problems as there is no teacher informing the
agent about which actions are right or wrong. Instead, the agent has to figure out the most
rewarding course of action solely through trial and error. Finding an analytical solution to
Equation 9 is extremely challenging and indeed only possible for a few special cases (Duff,
2003; Gittins, 1979), which made it historically near impossible to investigate such problems
within the framework of rational analysis.

Even though finding an analytical expression of the Bayes-optimal policy is often impossible,
it is straightforward to meta-learn an approximation to it (Duan et al., 2016; Wang et al.,
2016). The general concept is almost identical to the supervised learning case: parameterize
the to-be-learned policy with a recurrent neural network and replace the maximization over
the set of all possible policies from Equation 9 with a sample-based approximation that
maximizes over neural network parameters. The resulting problem can then be solved using
any standard deep reinforcement learning algorithm.

Like in the supervised learning case, the resulting recurrent neural network implements a
free-standing reinforcement learning algorithm after meta-learning is completed. Learning is
once again implemented via a simple forward pass through the network, i.e., by conditioning
the model on an additional data-point. The meta-learned reinforcement learning algorithm
approximates the Bayes-optimal policy under the same conditions as in the supervised learning
case: a sufficiently expressive model and an optimization procedure that is able to find the
global optimum.
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