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We study GPT-3, a recent large language model, using tools from cognitive
psychology. More specifically, we assess GPT-3’s decision-making, information search,
deliberation, and causal reasoning abilities on a battery of canonical experiments
from the literature. We find that much of GPT-3’s behavior is impressive: It solves
vignette-based tasks similarly or better than human subjects, is able to make decent
decisions from descriptions, outperforms humans in a multiarmed bandit task, and
shows signatures of model-based reinforcement learning. Yet, we also find that small
perturbations to vignette-based tasks can lead GPT-3 vastly astray, that it shows no
signatures of directed exploration, and that it fails miserably in a causal reasoning
task. Taken together, these results enrich our understanding of current large language
models and pave the way for future investigations using tools from cognitive psychology
to study increasingly capable and opaque artificial agents.
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With the advent of increasingly capable artificial agents comes the urgency to improve
our understanding of how they learn and make decisions (1). Take as an example modern
large language models (2). What these models can do is, by many standards, impressive.
They produce text that human evaluators have difficulty distinguishing from text written
by other humans (2), write computer code (3), and converse with humans about a
range of different topics (4). What is perhaps even more surprising is that these models’
abilities go beyond mere language generation. They can, for instance, also play chess at
a reasonable level (5) and solve university-level math problems (6). These observations
have prompted some to argue that this class of foundation models, which are models
trained on broad data at scale and adapted to a wide range of downstream tasks, shows
some form of general intelligence (7). Yet, others have been more skeptical, pointing out
that these models are still a far cry away from a human-level understanding of language
and semantics (8). But, how can we genuinely evaluate whether or not these models—at
least in some situations—do something intelligent? We suggest that one approach toward
answering this question may come from cognitive psychology. Psychologists, after all, are
experienced in trying to formally understand another notoriously impenetrable algorithm:
the human mind.

In the present paper, we demonstrate the potential of this approach through a case
study on the Generative Pre-trained Transformer 3 model (or short: GPT-3). GPT-3 is
an autoregressive language model (2), which utilizes the transformer architecture (9)—a
deep learning model that heavily relies on the mechanism of self-attention—to produce
human-like text. The model itself is large (it has 175 billion parameters), and it was
trained on a vast amount of data: hundreds of billions of words from the Internet and
books. GPT-3 can thus be thought of as an experiment in massively scaling up known
algorithms.

A Cognitive Psychology View on GPT-3. The core idea behind our approach is to treat
GPT-3 as a participant in a psychological experiment. We believe that using such
experiments to probe the abilities of large language models has considerable advantages
compared to already existing evaluation protocols. In particular, these experiments have
been carefully designed to detect various cognitive biases or to disentangle different
ways of how a task can be solved. They, therefore, allow us to go beyond the mere
performance-based analyses that have been the focus of prior work (10). This is important
for two reasons. First, the latest generation of language models is already able to perform
above the human level in the majority of tasks from standard benchmark datasets
(11, 12), making purely performance-based evaluation less meaningful as time progresses.
More importantly, to understand the full complexity of their behavior, it is crucial to
demystify how large language models solve challenging reasoning problems instead of
only measuring what they can and cannot do; and this is exactly the purpose for which
psychological experiments were designed.
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We will subject GPT-3 to several experiments taken from the
cognitive psychology literature. Together, these tasks test for a
wide range of higher-level cognitive abilities, including decision-
making, information search, deliberation, and causal reasoning.
We will begin our investigations with several, classical vignette-
based problems. For these vignette-based investigations, we
confronted GPT-3 with text-based descriptions of hypothetical
situations while collecting its responses. While our simulations
reveal interesting model characteristics, they also highlight two
major two flaws of such vignette-based experiments: GPT-3
has likely experienced identical or similar tasks in its training
data, and its responses can be tampered with by just marginally
changing the vignettes. To circumvent these issues, we also
evaluated GPT-3’s abilities in various task-based experiments. For
these task-based investigations, we took canonical tasks from the
psychology literature and emulated their experimental structure
as procedurally generated text to which GPT-3 responds on every
experimental trial. We then used GPT-3’s responses to analyze
its behavior just like how cognitive psychologists would analyze
human behavior in the same tasks. Importantly, these tasks avoid
the pitfall of being included in the training data as they are
procedurally generated by design.

Results

We used the public OpenAI API to run all our simulations
(13). There are four GPT-3 models accessible through this
API: “Ada,” “Babbage,” “Curie,” and “Davinci” (sorted from
the least to the most complex model). We relied on the most
powerful of these models (“Davinci”) unless otherwise noted.
We furthermore set the temperature parameter to 0, leading to
deterministic responses, and kept the default values for all other
parameters.

Vignette-Based Investigations. Wikipedia (14) defines a vignette
as “a hypothetical situation, to which research participants
respond thereby revealing their perceptions, values, social norms
or impressions of events.” Large language models, such as GPT-
3, have previously been studied using vignette-like problems
(10, 15, 16). For our vignette-based investigations, we took twelve
canonical scenarios from the cognitive psychology literature,
entered them as prompts into GPT-3, and recorded its answer.
For each scenario, we report whether GPT-3 responded correctly
or not. Moreover, we classified each response as something a
human could have said because it was either the correct response
or a mistake commonly observed in human data. For cases
where there were only two options, one correct and one that is
normally chosen by human subjects, we added a third option that
was neither correct nor plausibly chosen by people. We briefly
summarize our main findings for a subset of tested vignettes
in the following and refer the reader to SI Appendix for a
detailed description of all twelve tested vignettes and GPT-3’s
corresponding answers.

We first evaluated GPT-3’s decision-making abilities by
prompting the canonical “Linda problem” (17) (Fig. 1A). This
problem has been known to assess the conjunction fallacy, a for-
mal fallacy that occurs when it is assumed that specific conditions
are more probable than a single general one. In the standard
vignette, a hypothetical woman named Linda is described as
“outspoken, bright, and politically active.” Participants are then
asked whether it was more likely that Linda is a bank teller or that
she is a bank teller and an active feminist. GPT-3, just like people,
chose the second option, thereby falling for the conjunction
fallacy. We also prompted the so-called “cab problem” (18), in

which participants commonly fail to take the base rate of different
taxi colors in a city into account when judging the probability
of the color of a cab that was involved in an accident. Unlike
people, GPT-3 did not fall for the base-rate fallacy but instead
provided the (approximately) correct answer.

To test how GPT-3 searches for information, we presented
it—among other problems—with Wason’s well-known “Card
Selection Task” (19). We explained that the visible faces of four
cards showed A, K, 4, and 7, and that the truth of the proposition
“If a card shows a vowel on one face, then its opposite face shows
an even number” needed to be tested. GPT-3 suggested to turn
around A and 7, which is commonly accepted as the correct
answer, even though most people turn around A and 4.

We also tried to estimate GPT-3’s tendency to override an in-
correct fast response with answers derived by further deliberation.
For this, we prompted the three items of the Cognitive Reflection
Test (CRT) (20). One example item of this task is “A bat and
a ball cost $1.10 in total. The bat costs $1.00 more than the
ball. How much does the ball cost?”. While the initial response
might be to say $0.10, the actual correct answer is $0.05. For all
three items of the CRT, GPT-3 responded with the intuitive but
incorrect answer, as has been observed in earlier work (15).

Lastly, we assessed GPT-3’s causal reasoning abilities. In a
first test, we prompted GPT-3 with a version of the well-known
“Blicket” experiment (21). For this, blickets are introduced as
objects that turn on a machine. Afterward, two objects are
introduced. The first object turns on the machine on its own.
The second machine does not turn on the machine on its own.
Finally, both objects together turn on the machine. GPT-3, just
like people, managed to correctly identify that the first but not
the second object is a blicket. We furthermore probed GPT-3’s
ability of mature causal reasoning (22). In this vignette, GPT-3
was told that there were four pills: A, B, C, and D. While A and
B individually could kill someone, C and D could not. GPT-3
successfully answered multiple questions about counterfactuals
correctly, such as: “A man took pill B and pill C and he died. If
he had not taken pill B, could he still have died?”.
Problems with vignette-based investigations. From the twelve
vignette-based problems tested, GPT-3 answered six correctly,
and all of them in a way that could be described as human-like
(Fig. 1B). However, we think that interpreting these results is
difficult. For one, there is a chance that GPT-3 has encountered
these scenarios or similar ones in its training set since many of
the prompted scenarios were taken from famous psychological
experiments. Moreover, in additional investigations, we found
that many of the vignettes could be slightly modified and turned
into adversarial vignettes, such that GPT-3 would give vastly
different responses. In the cab problem, for example, it is clearly
stated that 15% of the cabs are blue and 85% are green. Yet,
asking GPT-3 about the probability that a cab involved in an
accident was black, it responded with “20%.” Furthermore,
simply changing the order of the options in Wason’s card
selection task from “A, K, 4, and 7” to “4, 7, A, and K” caused
GPT-3 to suggest turning around “A” and “K.” Giving GPT-3
the first item of the CRT and stating that “The bat costs $1.00
more than the bat,” it still thought that the ball was $0.10.
Finally, when phrasing the mature causal reasoning problem as
a Blicket problem in which machines could be turned on or off,
GPT-3 answered some questions incorrectly while contradicting
itself in its explanations.

Task-Based Investigations. Next, we show that many of the
issues encountered in vignette-based problems can be side-
stepped by considering more complex, procedurally generated
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A B

Fig. 1. Vignette-based tasks. (A) Example prompt of a hypothetical scenario, in this case, the famous Linda problem, as submitted to GPT-3. (B) Results. While
in 12 out 12 standard vignettes, GPT-3 answers either correctly or makes human-like mistakes, it makes mistakes that are not human-like when given the
adversarial vignettes.

psychological experiments. These task-based experiments have
been specifically designed by expert researchers to detect various
cognitive biases or to disentangle different ways of how a task can
be solved. Therefore, they allow for a more fine-grained analysis of
behavior than just looking at performance metrics. We illustrate
the value of such task-based investigations by presenting GPT-
3 with a set of four classical experiments that we believe to be
representative of the cognitive psychology literature. Importantly,
prompts for all of these experiments are procedurally generated,
ensuring that the encountered problems have not been part of
the training data.
Decision-making. How people make decisions from descriptions
is one of the most well-studied areas of cognitive psychology,
ranging from the early, seminal work of Kahneman and Tversky
(25) to modern, large-scale investigations (23, 24). In the
decisions from the descriptions paradigm, a decision-maker is
asked to choose between one of two hypothetical gambles like
the ones shown in Fig. 2 A and B. To test whether GPT-3
can reliably solve such problems, we presented the model with
over 13, 000 problems taken from a recent benchmark dataset
(23). Fig. 2C shows the regret, which is defined as the difference
between the expected outcome of the optimal option and that
of the actually chosen option, obtained by different models in
the GPT-3 family and compares their performance to human
decisions. We found that only the largest of the GPT-3 models
(“Davinci”) was able to solve these problems above chance level
(t(29134) = −16.85, P =< .001), while the three smaller
models did not (all P > 0.05). Even though the “Davinci”
model did reasonably well, it did not quite reach human-level
performance (t(29134) = −11.50, P < .001).

However, given that one of the GPT-3 models was not too far
away from human performance, it is reasonable to ask whether
the model also exhibited human-like, cognitive biases. In their
original work on prospect theory, Kahneman and Tversky (25)
identified the following biases in human decision-making:

• Certainty effect: Guaranteed outcomes are preferred over risky
ones even when they have slightly lower expected values.

• Reflection effect: Tendency for being risk-seeking when
maximizing gains but being risk-averse when minimizing
losses.

• Isolation effect: Preferences for an option can change based
on how it is structured sequentially.

• Overweighting bias: Higher importance is assigned to a
difference between two small probabilities (e.g., 1 and 2%)
than to the same differences between two larger probabilities
(e.g., 41 and 42%).

• Framing effect: Preferences change depending on whether a
choice is presented in terms of gains or losses.

• Magnitude perception: Higher importance is assigned to a
difference between two small outcomes (e.g., 10 and 20 dollars)
than to the same differences between two larger outcomes (e.g.,
110 and 120 dollars).

Each of these biases was revealed by contrasting answers to
carefully selected problem pairs. For example, to highlight that
peoples’ preferences change depending on whether a choice is
framed in terms of gains or losses (framing effect), Kahneman
and Tversky presented the two problems from Fig. 2A and B.
Formally, these two problems are equivalent, but they differ in
whether an option is described in terms of gains (Fig. 2B) or
losses (Fig. 2A). If a decision-maker is sensitive to such changes,
it should be reflected in its choice probabilities.

We replicated the full original analysis of Kahneman and
Tversky using choice probabilities obtained from GPT-3. A
complete list of employed problems and contrasts can be found in
SI Appendix. Fig. 2D summarizes the outcome of our experiment
graphically. For each contrast, we obtained the probability of
selecting option F (setting GPT-3’s temperature parameter to
1) and then computed the log-odds ratio between the choice
probabilities of both problems. The order of presented options
was counterbalanced. A positive log-odds ratio indicates a
human-like cognitive bias. We found that GPT-3 showed three
of the six tested biases. It displayed a framing effect, a certainty
effect, and an overweighting bias. It did, on the other hand, not
show a reflection effect, an isolation effect, and a sensitivity to
magnitude perception.
Information search. GPT-3 did well in the vignette-based infor-
mation search tasks, so we were curious how it would fare in a
more complex setting. The multiarmed bandit paradigm provides
a suitable test bed for this purpose. It extends the decisions from
the descriptions paradigm from the last section by adding two
layers of complexity. First, the decision-maker is not provided
with descriptions for each option anymore but has to learn their
values from noisy samples, that is, from experience (26). Second,
the interaction is not confined to a single choice but involves

PNAS 2023 Vol. 120 No. 6 e2218523120 https://doi.org/10.1073/pnas.2218523120 3 of 10

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 M
A

X
-P

L
A

N
C

K
-I

N
ST

IT
U

T
 F

U
E

R
 B

IO
L

O
G

IE
 T

U
E

B
IN

G
E

N
 o

n 
Fe

br
ua

ry
 1

7,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

19
2.

12
4.

26
.2

48
.

https://www.pnas.org/lookup/doi/10.1073/pnas.2218523120#supplementary-materials


A B C

D

Fig. 2. Decisions from descriptions. (A) Example prompt of a problem provided to GPT-3. (B) Example prompt of a problem provided to GPT-3. (C) Mean regret
averaged over all 13,000 problems taken from Peterson et al. (23). Lower regret means better performance. Error bars indicate the SE of the mean. (D) Log-odds
ratios of different contrasts used to test for cognitive biases. Positive values indicate that the given bias is present in humans (circle) or GPT-3 (triangle). Human
data adapted from Ruggeri et al. (24).

repeated decisions about which option to sample. Together,
these two modifications call for an important change in how
a decision-maker must approach such problems. It is not enough
to merely exploit currently available knowledge anymore but also
crucial to explore options that are unfamiliar. Previous research
suggests that people solve this exploration-exploitation trade-off
by applying a combination of two distinct strategies: directed
and random exploration (27). Directed exploration encourages
the decision-maker to collect samples from previously unexplored
options, whereas random exploration strategies inject some form
of stochasticity into the decision process (28).

Wilson et al. horizon task is the canonical experiment to test
whether a decision-maker applies the two aforementioned forms
of exploration (27). It involves a series of two-armed bandit
problems, each of which presents the decision-maker with two
options that deliver noisy rewards upon selecting them. Per trial,
one option has to be selected, and only the corresponding reward
feedback is provided. Participants are instructed to accumulate
as many rewards as possible over the entire experiment. There
are either five or ten trials per task. The first four are always
forced-choice trials, which require the decision-maker to select
a predetermined option. Forced-choice trials either provide two
observations for each option (equal information condition) or
a single observation from one option and three from the other
(unequal information condition). They are followed by either
one or six free-choice trials. (The number of free-choice trials is
also called the horizon.) Participants are aware of the current task
horizon and can exploit this information in their decision-making
process. Fig. 3A visualizes the previously described paradigm
graphically.

Importantly, the split into equal and unequal information
problems makes it possible to tease apart directed and random
exploration by looking at the decision in the first free-choice
trial. In the equal information condition, a choice is classified as
random exploration if it corresponds to the option with the lower
mean. In the unequal information condition, a choice is classified
as directed exploration if it corresponds to the option that was
observed fewer times during the forced-choice trials. Note that
short-horizon tasks do not benefit from making exploratory
choices and, hence, they serve as a baseline condition.

We presented a text-based version of the horizon task as illus-
trated in Fig. 3B to GPT-3. Fig. 3C compares the model’s regret
to the regret of human subjects. For short-horizon tasks, GPT-
3’s performance was indistinguishable from human performance
(t(5566) = −0.043, P = .97). This result highlights that
GPT-3 can not only make sensible decisions when presented
with descriptions of options but is also able to integrate this
information from noisy samples. The initial regret of GPT-3 in
long-horizon tasks was significantly lower than the corresponding
human regret (t(5550) = −4.07, P < .001) and was only
slightly above the one from short-horizon tasks. However, within
each task, people improved more than GPT-3 and reached a
final regret that was slightly but not significantly lower than
that of GPT-3 (t(5550) = −0.75, P = .23). Looking at the
entire experiment, GPT-3 (M = 2.72, SD = 5.98) achieved a
significantly lower regret than human subjects (M = 3.24, SD =
10.26; t(38878) = −5.03, P < .001).

Following prior work (27), we fitted a separate logistic
regression model for each information condition to investigate
how GPT-3 solves this task at hand (Materials and Methods for
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A B C

Fig. 3. Horizon task. (A) Visual overview of the horizon task paradigm. Each column pair corresponds to one example task. (B) Example prompt for one trial as
submitted to GPT-3. (C) Mean regret for GPT-3 and human subjects by horizon condition. Lower regret means better performance. Error bars indicate the SE
of the mean. Human data taken from Zaller et al. (29).

more details). We used the reward difference, horizon, their
interaction, and a bias term as independent variables for both
models. The model for the equal information condition used
an indicator for selecting option J in the first free-choice trial
as the dependent variable, whereas the model for the unequal
condition used an indicator for selecting the more informative
option (i.e., the one that has been observed fewer times during
the forced-choice trials).

If a decision-maker applied random exploration, we should
observe a positive effect of reward difference. If its random
exploration was furthermore strategic, we should find more noisy
decisions in long-horizon tasks of the equal information condi-
tion (reflected in a negative interaction effect of estimated reward
difference and horizon). People show both of these effects (27).
GPT-3 also displayed a significant effect of reward difference
(β = 0.18±0.01, z = 14.48, P < .001), suggesting that it used
at least a rudimentary form of random exploration. However, we
did not find a significant interaction effect between estimated
reward difference and horizon (β = −0.02 ± 0.02, z =
−1.47, P = .14), indicating that GPT-3 did not apply random
exploration in a strategic way and simply ignored the information
about the task horizon.

If a decision-maker applied directed exploration, we should
find a positive effect of horizon in the unequal information
condition, indicating that the more informative action was
sampled more frequently when the horizon was longer. While
humans show such an effect (27), we did not find it in GPT-3
(β = −0.15± 0.27, z = −0.56, P = .58), which demonstrates
that the model did not employ directed exploration. We provide a
visualization of GPT-3’s choice probabilities for both conditions
in SI Appendix.
Deliberation. Many realistic sequential decision-making prob-
lems do not only require the decision-maker to keep track of
reward probabilities but also to learn how to navigate from
state to state within an environment. Two modes of learning
are plausible in such scenarios: model-free and model-based
learning. Model-free learning—the more habitual mode of the
two—stipulates that the decision-maker should adjust its strategy
directly using the actually observed rewards. If something led to

a good outcome, a model-free agent will do more of it; if it led
to a bad outcome, a model-free agent will do less of it. Model-
based learning—the more deliberate mode of the two—instead
stipulates that the agent should explicitly learn the transition and
reward probabilities of the environment and use them to update
its strategy by reasoning about future outcomes.

These two modes of learning can be disentangled empirically
in the two-step task paradigm (30). The two-step task involves
a series of two-stage decision problems. There are two actions
available from the starting state: taking a spaceship to planet
X or to planet Y. Taking a spaceship transfers the agent to a
second stage. The spaceship arrives with a probability of 0.7
to the selected planet and with a probability of 0.3 to the
other planet. When arriving at one of these planets, the agent
encounters two local aliens and has to select one of them to trade
with. Trading with an alien probabilistically leads to receiving
treasures. This process is then repeated for a predefined number of
rounds. Participants are instructed to collect as many treasures as
possible within the entire experiment. The transition probabilities
between states remain consistent across the experiment, while
the probabilities of receiving treasures change slightly between
rounds. Fig. 4A shows a visual depiction of the two-step task.

Model-free learning predicts that the probability of the selected
first-stage action should increase upon receiving treasures in the
second stage, regardless of whether the decision-maker experi-
enced a rare or a common first-stage transition. Model-based
learning, on the other hand, predicts that, upon encountering
a rare transition and receiving treasures, the probability of the
selected first-stage action should decrease. We illustrate the
behavioral characteristics of both model-free and model-based
learning in Fig. 4 C and D. People tend to solve this task using
a combination of model-free and model-based learning (30) as
shown in Fig. 4E .

We tested how GPT-3 learns in the two-step task by
providing it with prompts like the one shown in Fig. 4B.
Fig. 4F visualizes the probability of repeating the first-stage
action for each combination of transition (rare or common) and
reward (treasures or junk). We observed that the probability of
repeating the previous first-stage action decreased after finding
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A B

C D E F

Fig. 4. Two-step task. (A) Visual overview of the two-step task paradigm. (B) Example prompt of one trial in the canonical two-step task as submitted to GPT-3.
(C) Model-free learning in dependency of rewarded and unrewarded as well as common and rare transitions. (D) Model-based learning in dependency of
rewarded and unrewarded as well as common and rare transitions. (E) Human behavior in dependency of rewarded and unrewarded as well as common and
rare transitions. Human data adapted from Daw et al. (30). (F ) GPT-3’s behavior in dependency of rewarded and unrewarded as well as common and rare
transitions. Error bars indicate the SE of the mean.

treasures through a rare transition (χ2(1, N = 1984) = 36.53,
P < .001). Meanwhile, the probability of repeating the same
first-stage action increased after a rare and not rewarded action
(χ2(1, N = 1816) = 5.17, P = .023). Taken together, these
two findings suggest that GPT-3 relied on a deliberate model-
based approach to solve the two-step task.
Causal reasoning. The analysis of the two-step task indicated
that GPT-3 can learn a model of the environment and use this
learned model to update its strategy. In our final test, we analyzed
whether GPT-3 can also use such a model to make more complex
inferences, such as reasoning about cause and effect. Perhaps the
most crucial insight of theories of causal reasoning is that there
is a difference between merely observing variables and actively
manipulating them.

Waldmann and Hagmayer (31) devised an experiment to
highlight that people are sensitive to the difference between seeing
and doing. They first presented subjects with 20 observations of a
three-variable system and then provided additional information
about the causal structure of the system. In the common-cause
condition, they told participants that A causes both B and C
(Fig. 5B). In the causal-chain condition, they inverted the causal
direction of A and B, such that B now causes A, which, as before,
causes C (Fig. 5C ). Finally, they asked their subjects to imagine 20
new observations for which they either had actively intervened on

the values of B or for which they merely had observed a particular
value of B. Participants had to report for how many of these 20
new observations variable C would be active.

Observing an active value of B in the common-cause condition
enabled participants to make the inference that A was likely to
be active as well, which, in turn, made it more likely that C was
also active. In contrast, activating B by means of interventions
did not allow for such an inference. Mathematically, the act
of intervening can be formalized by Pearl’s do-operator (32),
which sets a variable to a particular value but deletes all arrows
going into that variable from the causal graph. For the causal-
chain condition, one would expect to find no differences between
intervening and observing, as there was no arrow going into B
that had to be deleted.

We probed GPT-3’s ability to make causal inferences in this
task using a cover story about substances found in different wine
casks (33) (Fig. 5A). When provided with additional information
about the common-cause structure, GPT-3 made interventional
inferences that matched the normative prescription of causal
inference as illustrated in Fig. 5B. GPT-3 furthermore predicted
an increase in the number of observations with C = 1 after
observing B = 1, which was in line with both the normative
theory and human judgments. However, when observing B = 0,
GPT-3 did not reduce its prediction, which was neither the
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A B C

Fig. 5. Causal reasoning. (A) Example prompt for the causal reasoning task adapted from Waldmann and Hagmayer (31). (B) GPT-3’s responses alongside
responses of people and an ideal agent in the common-cause condition. (C) GPT-3’s responses alongside responses of people and an ideal agent in the
causal-chain condition.

correct inference nor human-like. From a normative perspective,
the causal-chain condition should not lead to a difference
between observational and interventional inferences. While
human subjects show exactly this pattern (31), GPT-3 made
identical predictions compared to the common-cause condition
as illustrated in Fig. 5C . This observation suggests that the model
was not able to incorporate the additional information about
the underlying causal structure into its inference process and
therefore makes it likely that the results from the common-cause
condition were purely accidental. Taken together, these results
suggest that GPT-3 has difficulties with causal reasoning in tasks
that go beyond a vignette-based characterization.
Robustness checks. It is well-known that large language models
can be highly sensitive to specific prompts (34). We, therefore,
wanted to investigate how robust our task-based results are to
changes in prompts. To test this, we have taken three of the task-
based experiments and repeated their simulations with different
prompt variations.

For the decisions from the descriptions paradigm, we varied
three different factors: instruction type, currency, and choice
labels. We varied the type of instruction by replacing the original
question with the request: “Please select one of the following
options.” We additionally experimented with replacing dollars as
a currency with either euro or generic coins, and modified the
choice labels to “Option 1” and “Option 2”. In total, this led to
twelve different prompt variations.

Due to API constraints, we only evaluated these variations
on a subset of the benchmark dataset (2,500 randomly selected
gambles). We found, in general, little variance in terms of
performance (Fig. 6A). Ten out of twelve prompts led to
regrets that were significantly better than chance but worse than
people. The two nonsignificant variations were the dollar and
euro request-based prompts with F/J as choice labels. The best-
performing variation was the question-based prompt with 1/2 as
choice labels and coins as currency. Phrasing the problem using
a question resulted in overall better performance than making a
request to select one of the options (β = 0.19, P < .001). We

view this result as sensible as the question-based version is less
ambiguous than the request-based one.

The prompt variations for the horizon task followed a similar
pattern as those from the decisions from the descriptions
paradigm. Like in the decisions from the descriptions paradigm,
we varied currency and choice labels. We furthermore evaluated
GPT-3 on a different cover story that required to make invest-
ments in different funds (SI Appendix for details) in addition to
the original casino cover story. In total, this led to twelve different
variants of the horizon task.

Looking at performance, we found that GPT-3 performed
significantly above chance level in all of the twelve prompts
(Fig. 6B). It performed better than human participants in eleven
out of these. Performance was overall slightly better in the
casino cover story than in the investment cover story, but this
effect was not significant (β = −0.51, P = .186). Replacing
the F/J choice labels with 1/2 led to a significant increase
in performance (β = −1.94, P < .001). Finally, there was
an influence of currency on performance, with dollars leading
to the best performance, followed by euro and coins. While
the difference in performance between dollars and coins was
significant (β = 1.66, P < .001), the difference between dollars
and euro was not (β = 0.69, P = .145).

We found that how GPT-3 explored was largely similar across
prompt variations (Fig. 6 C and D). There was an effect of
random exploration in every setting (all P < .001). However,
again, GPT-3 was not strategic in applying random exploration,
meaning that it did not explore more in long-horizon tasks (all
P > .25). Interestingly, we found that changing to an investment
cover story (and keeping F/J as choice labels) led to risk-averse
behavior, meaning that GPT-3 even increased its preference for
the more frequently observed option as opposed to exploring
the less frequently observed option (P < .001, P = .010 and
P = .004 for dollars, euro, and coins, respectively). We provide
a potential justification for this result in our general discussion.

We also repeated our analysis of the two-step task with a
different cover story. In this new cover story, we asked GPT-3
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A B

C D

E

F

Fig. 6. Prompt variations. (A) Performance for different prompt variations in the decisions from the descriptions paradigm. (B) Performance for different
prompt variations in the horizon task. (C) Effect of random exploration for different prompt variations in the horizon task. (D) Effect of directed exploration for
different prompt variations in the horizon task. (E) GPT-3’s behavior in dependency of rewarded and unrewarded as well as common and rare transitions for
the alien cover story (reproduced from Fig. 4F ). (F ). GPT-3’s behavior in dependency of rewarded and unrewarded as well as common and rare transitions for
the magical carpet cover story. Error bars indicate the SE of the mean.

to imagine that it is a musician earning a living by traveling the
mountains of a fantasy land with a magical carpet (35). Upon
visiting a mountain, it had to select one of two local genies to
perform for. GPT-3 received one gold coin if the selected genie
liked the music (SI Appendix for the full prompt). The underlying
problem structure (reward and transition probabilities) remained
identical.

Like in the alien cover story, we found that GPT-3’s behavior
was similar to that of a model-based algorithm (Fig. 6F ). The
probability of repeating the previously selected first-stage action
decreased after receiving gold coins through a rare transition
(χ2(1, N = 1974) = 20.30, P < .001). Furthermore, the
probability of repeating the same first-stage action also increased
after a rare and not rewarded action but—in contrast to the alien
cover story—this effect was not significant (χ2(1, N = 1826) =
1.08, P = .30).

Discussion

In 1904, sixteen leading academics of the Prussian Academy
of Sciences signed a statement indicating that a horse, named
“Clever Hans,” could solve mathematical problems at a human-
like level. Back then, it took another scientist, Oskar Pfungst,
years of systematic investigations to prove that the horse was
merely reacting to the people who were watching him (36). With
the advent of large-scale machine learning models, the risks of
overinterpreting simple behaviors as intelligent runs rampant.
The abilities of large language models, in particular, the ability
to solve tasks beyond language generation, are impressive at first
glance. These models have, therefore, been called many things;

some think they are sentient (37) and that they show a form of
general intelligence (7). Yet, others believe that they are merely
stochastic parrots (38) or a linguistic one-trick pony (8).

We have argued to gauge these models’ abilities similar to how
Oskar Pfungst approached his object of study: via systematic
investigations and psychological experimentation. Using tools
from cognitive psychology, we have subjected one particular large
language model, GPT-3, to a series of investigations, probing its
decision-making, information search, deliberation, and causal
reasoning abilities. Our results have shown that GPT-3 can solve
some vignette-based experiments similarly or better than human
subjects. However, interpreting these results is difficult because
many of these vignettes might have been part of its training
set, and GPT-3’s performance suffered greatly given only minor
changes to the original vignettes. We, therefore, complemented
our analyses with various task-based assessments of GPT-3’s
abilities. Therein, we found that GPT-3 made reasonable de-
cisions for gambles provided as descriptions while also mirroring
some human behavioral biases. GPT-3 also managed to solve
a multiarmed bandit task well, where it performed better than
human subjects; yet, it only showed traces of random but not
of directed exploration. In the canonical two-step task, GPT-
3 showed signatures of model-based reinforcement learning.
However, GPT-3 failed spectacularly in using an underlying
causal structure for its inference, leading to responses that were
neither correct nor human-like.

What do we make of GPT-3’s performance in our tasks? GPT-
3’s behavior contained both surprising and expected elements.
We found it surprising that GPT-3 could solve many of
the provided tasks reasonably well, that it performed well in
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gambles, a multiarmed bandit task, and even showed signatures
of model-based reinforcement learning. These findings could
indicate that—at least in some instances—GPT-3 is not just a
stochastic parrot and could pass as a valid subject for some of the
experiments we have administered. Yet what was not surprising
were some of GPT-3’s failure cases. GPT-3 did not show any
signatures of directed exploration. We believe that this is intuitive
and can be explained by the differences in how humans and
GPT-3 learn about the world. Humans learn by connecting with
other people, asking them questions, and actively engaging with
their environments, whereas large language models learn by being
passively fed a lot of text and predicting what word comes next.
GPT-3 also failed to learn about and use causal knowledge in
a simple reasoning task. We believe it makes sense that GPT-3
struggles to reason causally because acquiring knowledge about
interventions from passive streams of data is hard to impossible
(32). The upside of our findings is the recommendation that to
create more intelligent agents, researchers should not only scale
up algorithms that are passively fed with data but instead let
agents directly interact and engage with the world (39, 40).

Furthermore, our task-based investigations revealed that GPT-
3 can change how it solves a problem depending on the cover
story it is presented with. In particular, we found that changing
the cover story in the horizon task from a casino to an investment
setting led to the emergence of risk-averse behavior. We think that
a potential reason for this observation is that stakes in a financial
setting are high, which, in turn, encourages an agent to be more
risk-averse. Thus, this finding could be interpreted as an adaptive
response to the environmental setting. However, it also raises
the question of how to view GPT-3—and large language models
more generally—within a psychological experiment: Should they
be treated as a single participant or many? GPT-3 is, on the one
hand, clearly just a single model. But, on the other hand, it
was also trained to mimic text written by many different people.
While we do not have immediate answers on this issue, we think
that this perspective opens up prospects for investigating large
language models.

We are not the first to probe large-scale machine learning
models’ abilities. Indeed, there has been a recent push toward
creating benchmarks to assess the capability of foundation
models (10, 41, 42). Most of these benchmarks focus heavily
on evaluating whether such models can solve a given task or not.
In contrast to this, psychological experiments—such as the ones
we have employed—are often carefully designed to probe how
a given task is solved. We, therefore, believe that our approach
complements existing benchmarks in significant ways.

Large language models have been previously studied using
other methods from the cognitive sciences in the broader sense.
Examples include property induction (43), thinking-out-loud
protocols (44), learning causal over-hypotheses (45), psycholin-
guistic completion (46), or affordance understanding (47). Many
of these studies operate in the vignette-based setting, thereby
potentially falling victim to the stochastic parrot metaphor.
Recent work has recognized this issue and, in turn, evaluated
language models on many problem variations to minimize
training set effects (16, 48). The procedurally generated task-
based experiments used in our work are guaranteed to be not
included in the training data and therefore provide an additional
tool for addressing this problem.

Learning in large language models remains a puzzling phe-
nomenon despite all of these studies. For example, recent
evidence suggests that in-context learning is “as fast when
given irrelevant or misleading templates as [it is] when given
instructively good templates” (49). In a similar vein, it has been

demonstrated that zero-shot prompts containing no examples or
instruction “can elicit comparable or superior performance to
the few-shot format” (50). Together, these results indicate that
the function of few-shot examples is not to provide additional
information but rather to locate an already learned task. However,
the latter possibility is ruled out in our task-based experiments
as they can not be solved above chance level without making use
of the provided examples. Our results, therefore, also confirm
that GPT-3 can integrate new information from examples if it is
required by the task at hand.

Finally, methods from cognitive psychology have also been
applied to understand deep learning models’ behavior more
generally (51). Therefore, our current work can be seen as part of
a larger scientific movement where methods from psychology are
becoming increasingly more important to understand capable
black-box algorithms’ learning and decision-making processes
(52–55).

To summarize, we studied GPT-3, a recent large-scale lan-
guage model, using tools from cognitive psychology. We assessed
GPT-3’s decision-making, information search, deliberation, and
causal reasoning abilities and found that it was able to solve
most of the presented tasks at a decent level. Less than two years
ago, the sheer fact that a general-purpose language model could
give reasonable responses to these reasoning problems would
have been a huge surprise. From this perspective, our analysis
highlights how far these models have come. Nevertheless, we
also found that small perturbations to the provided prompts
easily led GPT-3 astray and that it lacks important features
of human cognition, such as directed exploration and causal
reasoning. While it does not seem so far-fetched that even larger
models could acquire more robust and sophisticated reasoning
abilities, we ultimately believe that actively interacting with the
world will be crucial for matching the full complexity of human
cognition. Fortunately, many users already interact with GPT-
3-like models, and this number is only increasing with new
applications on the horizon. Future language models will likely
be trained on this data, leading to a natural interaction loop
between artificial and natural agents.

Materials and Methods

Vignette-Based Investigations. SI Appendix, Tables S1–S5 contain a detailed
description of submitted prompts and GPT-3’s corresponding answers.

Decision-Making. The full list of problems for the contrast analysis can be found
in SI Appendix, Table S6. SI Appendix, Table S7 shows a list of used contrasts.

Information Search. We ran 3,200 simulations of the horizon task, amounting
to data from ten participants.

For the equal information condition, reported statistics were obtained by
fitting the parameters of the following logistic regression model:

p(A5 = J) = σ (w1(µJ − µF) + w2h + w3(µJ − µF)h + b) ,

whereµF andµJ are the mean rewards for both options, and h ∈ {0, 1} is an
indicator variable for the long-horizon.

For the unequal information condition, reported statistics were obtained by
fitting the parameters of the following logistic regression model:

p(A5 = a−) = σ
(

w1(µa− − µa+) + w2h + w3(µa− − µa+)h + b
)

,

where a− denotes the option that has been observed fewer times during the
forced-choice trials, while a+ denotes the option that has been observed more
frequently.
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Parameters of both logistic regression models were obtained by finding
a maximum likelihood estimate using the Newton–Raphson algorithm.
SI Appendix, Fig. S1 visualizes the choice probabilities for GPT-3 and humans in
the equal and the unequal information condition.

Deliberation. We ran 200 simulations of the two-step task, each consisting of
20 repetitions of the two stages. For a detailed description of the model-free and
model-based reinforcement learning algorithms, see Daw et al. (30).

Causal Reasoning. For a detailed description of the normative solution for both
causal structures and inference types, see Waldmann and Hagmayer (31).

Robustness Checks. SI Appendix, Fig. S2A describes the alternative cover story
for the horizon task. SI Appendix, Fig. S2B describes the alternative cover story
for the two-step task.

Data, Materials, and Software Availability. Data and code for the cur-
rent study are available through the GitHub repository https://github.com/
marcelbinz/GPT3goesPsychology, https://10.5281/zenodo.6778724.
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